The gastrointestinal tract microbiota of the Japanese quail, Coturnix japonica
详细信息    查看全文
  • 作者:Ngare Wilkinson ; Robert J. Hughes…
  • 关键词:Japanese quail ; Intestinal ; Microbiota ; Diversity
  • 刊名:Applied Microbiology and Biotechnology
  • 出版年:2016
  • 出版时间:May 2016
  • 年:2016
  • 卷:100
  • 期:9
  • 页码:4201-4209
  • 全文大小:834 KB
  • 参考文献:Ashelford KE, Chuzhanova NA, Fry JC, Jones AJ, Weightman AJ (2005) At least 1 in 20 16S rRNA sequence records currently held in public repositories is estimated to contain substantial anomalies. Appl Environ Microbiol 71(12):7724–7736CrossRef PubMed PubMedCentral
    Caporaso JG, Kuczynski J, Stombaugh J, Bittinger K, Bushman FD, Costello EK, Fierer N, Pena AG, Goodrich JK, Gordon JI, Huttley GA, Kelley ST, Knights D, Koenig JE, Ley RE, Lozupone CA, McDonald D, Muegge BD, Pirrung M, Reeder J, Sevinsky JR, Turnbaugh PJ, Walters WA, Widmann J, Yatsunenko T, Zaneveld J, Knight R (2010) QIIME allows analysis of high-throughput community sequencing data. Nat Methods 7(5):335–336CrossRef PubMed PubMedCentral
    Chapman J, Regan F (2011) Sebacic and succinic acid derived plasticised PVC for the inhibition of biofouling in its initial stages. J Appl Biomater Biomed 9(3):176–184
    Chun J, Lee JH, Jung Y, Kim M, Kim S, Kim BK, Lim YW (2007) EzTaxon: a web-based tool for the identification of prokaryotes based on 16S ribosomal RNA gene sequences. Int J Syst Evol Microbiol 57(Pt 10):2259–2261CrossRef PubMed
    Clench MH, Mathias JR (1995) The avian cecum: a review. Wilson Bull 107(1):93–121
    DeBruyn JM, Fawaz MN, Peacock AD, Dunlap JR, Nixon LT, Cooper KE, Radosevich M (2013) Gemmatirosa kalamazoonesis gen. nov., sp. nov., a member of the rarely-cultivated bacterial phylum Gemmatimonadetes. J Gen Appl Microbiol 59(4):305–312CrossRef PubMed
    DeSantis TZ, Hugenholtz P, Larsen N, Rojas M, Brodie EL, Keller K, Huber T, Dalevi D, Hu P, Andersen GL (2006) Greengenes, a chimera-checked 16S rRNA gene database and workbench compatible with ARB. Appl Environ Microbiol 72(7):5069–5072CrossRef PubMed PubMedCentral
    Edgar RC (2010) Search and clustering orders of magnitude faster than BLAST. Bioinformatics 26(19):2460–2461CrossRef PubMed
    Fadrosh DW, Ma B, Gajer P, Sengamalay N, Ott S, Brotman RM, Ravel J (2014) An improved dual-indexing approach for multiplexed 16S rRNA gene sequencing on the Illumina MiSeq platform. Microbiome 2(1):6CrossRef PubMed PubMedCentral
    Golian A, Maurice DV (1992) Dietary poultry fat and gastrointestinal transit time of feed and fat utilization in broiler chickens. Poult Sci 71(8):1357–1363CrossRef PubMed
    Knights D, Kuczynski J, Charlson ES, Zaneveld J, Mozer MC, Collman RG, Bushman FD, Knight R, Kelley ST (2011) Bayesian community-wide culture-independent microbial source tracking. Nat Methods 8(9):761–763CrossRef PubMed PubMedCentral
    Markle JG, Frank DN, Mortin-Toth S, Robertson CE, Feazel LM, Rolle-Kampczyk U, von Bergen M, McCoy KD, Macpherson AJ, Danska JS (2013) Sex differences in the gut microbiome drive hormone-dependent regulation of autoimmunity. Science 339(6123):1084–1088CrossRef PubMed
    Mead GC (1989) Microbes of the avian cecum: types present and substrates utilized. J Exp Zool Suppl 3:48–54CrossRef PubMed
    Pan D, Yu Z (2014) Intestinal microbiome of poultry and its interaction with host and diet. Gut Microbes 5(1):108–119CrossRef PubMed PubMedCentral
    Raji AO, Alade NK, Duwa H (2014) Estimation of model parameters of the Japanese quail growth curve using Gompertz model. Archivos de Zootecnia 63 (243)
    Sekelja M, Rud I, Knutsen SH, Denstadli V, Westereng B, Naes T, Rudi K (2012) Abrupt temporal fluctuations in the chicken fecal microbiota are explained by its gastrointestinal origin. Appl Environ Microbiol 78(8):2941–2948CrossRef PubMed PubMedCentral
    Skrzypek T, Valverde Piedra JL, Skrzypek H, Wolinski J, Kazimierczak W, Szymanczyk S, Pawlowska M, Zabielski R (2005) Light and scanning electron microscopy evaluation of the postnatal small intestinal mucosa development in pigs. J Physiol Pharmacol 56(Suppl 3):71–87PubMed
    Sommer F, Backhed F (2013) The gut microbiota—masters of host development and physiology. Nat Rev Microbiol 11(4):227–238CrossRef PubMed
    Stanley D, Geier MS, Hughes RJ, Denman SE, Moore RJ (2013) Highly variable microbiota development in the chicken gastrointestinal tract. PLoS ONE 8(12), e84290CrossRef PubMed PubMedCentral
    Stanley D, Hughes RJ, Moore RJ (2014) Microbiota of the chicken gastrointestinal tract: influence on health, productivity and disease. Appl Microbiol Biotechnol 98(10):4301–4310CrossRef PubMed
    Stanley D, Geier MS, Chen H, Hughes RJ, Moore RJ (2015) Comparison of fecal and cecal microbiotas reveals qualitative similarities but quantitative differences. BMC Microbiol 15(1):51CrossRef PubMed PubMedCentral
    Su H, McKelvey J, Rollins D, Zhang M, Brightsmith DJ, Derr J, Zhang S (2014) Cultivable bacterial microbiota of northern bobwhite (Colinus virginianus): a new reservoir of antimicrobial resistance? PLoS ONE 9(6), e99826CrossRef PubMed PubMedCentral
    Waite DW, Taylor MW (2014) Characterizing the avian gut microbiota: membership, driving influences, and potential function. Front Microbiol 5:223CrossRef PubMed PubMedCentral
  • 作者单位:Ngare Wilkinson (1) (2)
    Robert J. Hughes (2) (3) (4)
    William J. Aspden (1)
    James Chapman (1) (2)
    Robert J. Moore (2) (5) (6)
    Dragana Stanley (1) (2)

    1. Institute of Future Farming, Central Queensland University, Bruce Highway, Building 6 Room 2.33, Rockhampton, QLD, 4702, Australia
    2. Poultry Cooperative Research Centre, University of New England Armidale, Armidale, NSW, 2351, Australia
    3. South Australian Research and Development Institute, Pig and Poultry Production Institute, Roseworthy, South Australia, 5371, Australia
    4. School of Animal and Veterinary Sciences Roseworthy, The University of Adelaide, Adelaide, South Australia, 5371, Australia
    5. School of Applied Sciences and Health Innovations Research Institute (HIRi), RMIT University, Bundoora, VIC, 3083, Australia
    6. Department of Microbiology, Monash University, Clayton, VIC, 3800, Australia
  • 刊物类别:Chemistry and Materials Science
  • 刊物主题:Chemistry
    Biotechnology
    Microbiology
    Microbial Genetics and Genomics
  • 出版者:Springer Berlin / Heidelberg
  • ISSN:1432-0614
文摘
Microbiota in the gastrointestinal tract (GIT) plays an essential role in the health and well-being of the host. With the exception of chickens, this area has been poorly studied within birds. The avian GIT harbours unique microbial communities. Birds require rapid energy bursts to enable energy-intensive flying. The passage time of feed through the avian GIT is only 2–3.5 h, and thus requires the presence of microbiota that is extremely efficient in energy extraction. This investigation has used high-throughput 16S rRNA gene sequencing to explore the GIT microbiota of the flighted bird, the Japanese quail (Coturnix japonica). We are reporting, for the first time, the diversity of bacterial phylotypes inhabiting all major sections of the quail GIT including mouth, esophagus, crop, proventriculus, gizzard, duodenum, ileum, cecum, large intestine and feces. Nine phyla of bacteria were found in the quail GIT; however, their distribution varied significantly between GIT sections. Cecal microbiota was the most highly differentiated from all the other communities and showed highest richness at an OTU level but lowest richness at all other taxonomic levels being comprised of only 15 of total 57 families in the quail GIT. Differences were observed in the presence and absence of specific phylotypes between sexes in most sections.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700