Experimental and quantum chemical studies of a novel synthetic prenylated chalcone
详细信息    查看全文
  • 作者:José C Espinoza-Hicks (1)
    Alejandro A Camacho-Dávila (1)
    Norma R Flores-Holguín (2)
    Guadalupe V Nevárez-Moorillón (1)
    Daniel Glossman-Mitnik (2)
    Luz M Rodríguez-Valdez (1)
  • 关键词:NMR ; Molecular structure ; Quantum ; chemistry methods ; Flavonoid
  • 刊名:Chemistry Central Journal
  • 出版年:2013
  • 出版时间:December 2013
  • 年:2013
  • 卷:7
  • 期:1
  • 全文大小:382KB
  • 参考文献:1. Dimmock JR, Elias DW, Beazely MA, Kandepu NM: Bioactivities of Chalcones. / Curr Med Chem 1999, 6:1125-149.
    2. Tomar V, Bhattacharjee G, Kamaluddin , AshokKumar : Synthesis and antimicrobial evaluation of new chalcones containing piperazine or 2,5-dichlorothiophene moiety. / Bioorg Med Chem Lett 2007, 17:5321-324. j.bmcl.2007.08.021">CrossRef
    3. Nimmanapalli PR, Aparoya P, Mohan Reddy C, Achari C, Ramu Sridhar P, Reddanna P: Design, synthesis, and biological evaluation of prenylated chalcones as 5-LOX inhibitors. / Bioorg Med Chem 2010, 18:5807-815. j.bmc.2010.06.107">CrossRef
    4. Jasinski JP, Butcher RJ, Mayekar AN, Yathirajan HS, Narayana B: Structures of three chalcones derived from 6-Methoxy-2-naphthaldehyde. / J Chem Crystallogr 2009, 39:157-62. CrossRef
    5. Rajesh Kumar PC, Ravindrachary V, Janardhana K, Manjunath HR, Karegouda P, Crasta V, Sridhar MA: Optical and structural properties of chalcone NLO single crystals. / J Mol Struct 2011, 1005:1-. j.molstruc.2011.07.038">CrossRef
    6. Subbiah Pandi A, Velmurugan D, Shanmuga Sundara Raj S, Fun HK, Bansal MC: 1-(2-Hydroxy-4-methoxyphenyl)-3-(2,3,4-trimethoxyphenyl)prop-2-en-1-one. / Acta Crystallogr C 2003, 59:o302-o304. CrossRef
    7. Yunsheng X, An L, Youguang Z, Zhang L, Gong X, Qian Y, Liu Y: Structure and electronic spectral property of coumarin–chalcone hybrids: A comparative study using conventional and long-range corrected hybrid functionals. / Comput Theor Chem 2012, 981:90-9. j.comptc.2011.11.050">CrossRef
    8. Heine T, Goursot A, Seifert G, Weber J: Performance of DFT for 29Si NMR Chemical Shifts of Silanes. / J Phys Chem 2001, 105:620-26. jp002495k">CrossRef
    9. London F: Théorie quantique des courants interatomiques dans les combinaisons aromatiques. / J Phys Radium 1937, 8:397-09. jphysrad:01937008010039700">CrossRef
    10. McWeeny R: Perturbation theory for the Fock-Dirac density matrix. / Phys Rev 1962, 126:1028-034. CrossRef
    11. Ditchfield R: Self-consistent perturbation theory of diamagnetism I, A gauge-invariant LCAO method for NMR chemical shifts. / Mol Phys 1974, 27:789-07. CrossRef
    12. Dodds JL, McWeeny R, Sadlej AJ: Self-consistent perturbation theory, Generalization for perturbation-dependent non-orthogonal basis set. / Mol Phys 1977, 37:1779-791. CrossRef
    13. Wolinski K, Hilton JF, Pulay P: Efficient implementation of the gauge-independent atomic orbital method for NMR chemical shift calculations. / J Am Chem Soc 1990, 112:8251-260. ja00179a005">CrossRef
    14. Keith TA, Bader RFW: Calculation of magnetic response properties using atoms in molecules. / Chem Phys Lett 1992, 194:1-. CrossRef
    15. Keith TA, Bader RFW: Calculation of magnetic response properties using a continuous set of gauge transformations. / Chem Phys Lett 1993, 210:223-31. CrossRef
    16. Cheeseman JR, Trucks GW, Keith TA, Frisch MJ: A comparison of models for calculating nuclear magnetic resonance shielding tensors. / J Chem Phys 1996, 104:5497-509. CrossRef
    17. Kutzelnigg W: Theories of magnetic susceptibilities and NMR chemical shifts in terms of localized quantities. / Isr J Chem 1980, 19:192-00.
    18. Schindler M, Kutzelnigg W: Theory of magnetic susceptibilities and NMR chemical shifts in terms of localized quantities, II. Application to some simple molecules. / J Chem Phys 1982, 76:1919-933. CrossRef
    19. Schindler M, Kutzelnigg W: Theory of magnetic susceptibilities and NMR chemical shifts in terms of localized quantities. 4. Some small molecules with multiple bonds (N2, HCN, CO, C2H2, CO2, N2O, O3, FNO). / Mol Phys 1983, 48:781-98. CrossRef
    20. Schindler M, Kutzelnigg W: Theory of magnetic susceptibilities and NMR chemical shifts in terms of localized quantities. 3. Application to hydrocarbons and other organic molecules. / J Am Chem Soc 1983, 105:1360-370. ja00343a049">CrossRef
    21. Schindler M: Magnetic properties in terms of localized quantities. 5. Carbocations. / J Am Chem Soc 1987, 109:1020-033. ja00238a007">CrossRef
    22. Hansen AE, Bouman TD: Localized orbital/local origin method for calculation and analysis of NMR shieldings. Applications to 13C shielding tensors. / J Chem Phys 1985, 82:5035-047. CrossRef
    23. Liu Z, Yoon G, Cheon HS: An enantioselective total synthesis of (S)-(?-licochalcone E: determination of the absolute configuration. / Tetrahedron 2010, 66:3165-172. j.tet.2010.02.089">CrossRef
    24. Becke AD: Density‐functional thermochemistry, III. The role of exact exchange. / J Chem Phys 1993, 98:5648-652. CrossRef
    25. Stephens PJ, Devlin FJ, Chabalowski CF, Frisch MJ: Ab initio calculation of vibrational absorption and circular dichroism spectra using density functional force fields. / J Phys Chem 1994, 98:11623-1627. j100096a001">CrossRef
    26. Adamo C, Barone V: Toward reliable density functional methods without adjustable parameters: The PBE0 model. / J Chem Phys 1999, 110:6158-169. CrossRef
    27. Tao J, Perdew JP, Staroverov VN, Scuseria GE: Climbing the Density Functional Ladder: Nonempirical Meta–Generalized Gradient Approximation Designed for Molecules and Solids. / Phys Rev Lett 2003, 91:146401-46404. CrossRef
    28. Staroverov VN, Scuseria GE, Tao J, Perdew JP: Comparative assessment of a new nonempirical density functional: Molecules and hydrogen-bonded complexes. / J Chem Phys 2003, 119:12129-2136. CrossRef
    29. Zhao Y, Schultz NE, Truhlar DG: Design of density functionals by combining the method of constraint satisfaction with parametrization for thermochemistry, thermochemical kinetics, and noncovalent interactions. / J Chem Theory Comput 2006, 2:364-82. CrossRef
    30. Zhao Y, Truhlar DG: Density functionals with broad applicability in chemistry. / Acc Chem Res 2008, 41:157-67. CrossRef
    31. Zhao Y, Truhlar DG: The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: two new functionals and systematic testing of four M06-class functionals and 12 other functionals. / Theor Chem Acc 2008, 120:215-41. CrossRef
    32. Dennington R, Keith T, Millam J: / GaussView. Version 5. Shawnee Mission KS: Semichem Inc; 2009.
    33. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JA Jr, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas O, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ: / Gaussian 09, Revision A.1. Wallingford CT: Gaussian, Inc; 2009.
    34. Krishnan R, Binkley JS, Seeger R, Pople JA: Self‐consistent molecular orbital methods. XX. A basis set for correlated wave functions. / J Chem Phys 1980, 72:650-54. CrossRef
    35. Qian Z, Feng H, He L, Yang W, Bi S: Assessment of the accuracy of theoretical methods for calculating 27al nuclear magnetic resonance shielding tensors of aquated aluminim species. / J Phys Chem 2009, 113:5138-143. jp810632f">CrossRef
    36. Kolev TM, Angelov P: 1,1,1-Trichloro-3-(1-phenethylamino-ethylidene)-pentane-2,4-dione -synthesis, spectroscopic, theoretical and structural elucidation. / J Phys Org Chem 2007, 20:1108-113. CrossRef
    37. Ledesma AE, Zinczuk J, López-González JJ, Ben Altabef A, Brandán SA: Structural and vibrational study of 4-(2'-furyl)-1-methylimidazole. / J Mol Struct 2009, 924-26:322-31. j.molstruc.2009.01.058">CrossRef
    38. Wu X, Tiekink ERT, Kostetski I, Kocherginsky N, Tan ALC, Khoo SB, Wilairat P, Go ML: Antiplasmodial activity of ferrocenyl chalcones: Investigations into the role of ferrocene. / Eur J Pharm Sci 2006, 27:175-87. j.ejps.2005.09.007">CrossRef
    39. Sun YF, Xu SH, Wu RT, Wang ZY, Zheng ZB, Li JK, Cui YP: The synthesis, structure and photoluminescence of coumarin-based chromophores. / Dyes Pigm 2010, 87:109-18. j.dyepig.2010.03.003">CrossRef
    40. Xue Y, An L, Zheng Y, Zhang L, Gong X, Qian Y, Liu Y: Structure and electronic spectral property of coumarin–chalcone hybrids: A comparative study using conventional and long-range corrected hybrid functionals. / Comput Theor Chem 2012, 981:90-9. j.comptc.2011.11.050">CrossRef
    41. Domiano P, Nardelli M, Balsamo A, Macchia B, Macchia F: Crystal and molecular structure of p-methoxybenzyl 2α-methyl-2β-[(R)-acetoxy(methoxy)methyl]-6β-phenoxyacetamidopenam-3α-carboxylate. / Acta Crystallogr B 1979, 35:1363-372. CrossRef
    42. Ducki S, Rennison D, Woo M, Kendall A, Dit Chabert JF, McGown AT, Lawrence NJ: Combretastatin-like chalcones as inhibitors of microtubule polymerization. Part 1: Synthesis and biological evaluation of antivascular activity. / Bioorg Med Chem 2009, 17:7698-710. j.bmc.2009.09.039">CrossRef
    43. Juvale K, Pape VFS, Wiese M: Investigation of chalcones and benzochalcones as inhibitors of breast cancer resistance protein. / Bioorg Med Chem 2012, 20:346-55. j.bmc.2011.10.074">CrossRef
    44. Bandgar BP, Gawande SS, Bodade RG, Totre JV, Khobragade CN: Synthesis and biological evaluation of simple methoxylated chalcones as anticancer, anti-inflammatory and antioxidant agents. / Bioorg Med Chem 2010, 18:1364-370. j.bmc.2009.11.066">CrossRef
    45. Ito C, Itoigawa M, Otsuka T, Tokuda H, Nishino H, Furukawa H: Constituents of Boronia pinnata. / J Nat Prod 2000, 63:1344-348. CrossRef
  • 作者单位:José C Espinoza-Hicks (1)
    Alejandro A Camacho-Dávila (1)
    Norma R Flores-Holguín (2)
    Guadalupe V Nevárez-Moorillón (1)
    Daniel Glossman-Mitnik (2)
    Luz M Rodríguez-Valdez (1)

    1. Facultad de Ciencias Químicas, Universidad Autónoma de Chihuahua, Circuito No. 1, Nuevo Campus Universitario, Chih, Mexico
    2. Centro de Investigación en Materiales Avanzados, S.C. Blvd. Miguel de Cervantes 120, Complejo Industrial Chihuahua, Chih, Mexico
  • ISSN:1752-153X
文摘
Background Chalcones are ubiquitous natural compounds with a wide variety of reported biological activities, including antitumoral, antiviral and antimicrobial effects. Furthermore, chalcones are being studied for its potential use in organic electroluminescent devices; therefore the description of their spectroscopic properties is important to elucidate the structure of these molecules. One of the main techniques available for structure elucidation is the use of Nuclear Magnetic Resonance Spectroscopy (NMR). Accordingly, the prediction of the NMR spectra in this kind of molecules is necessary to gather information about the influence of substituents on their spectra. Results A novel substituted chalcone has been synthetized. In order to identify the functional groups present in the new synthesized compound and confirm its chemical structure, experimental and theoretical 1H-NMR and 13C-NMR spectra were analyzed. The theoretical molecular structure and NMR spectra were calculated at both the Hartree-Fock and Density Functional (meta: TPSS; hybrid: B3LYP and PBE1PBE; hybrid meta GGA: M05-2X and M06-2X) levels of theory in combination with a 6-311++G(d,p) basis set. The structural parameters showed that the best method for geometry optimization was DFT:M06-2X/6-311++G(d,p), whereas the calculated bond angles and bond distances match experimental values of similar chalcone derivatives. The NMR calculations were carried out using the Gauge-Independent Atomic Orbital (GIAO) formalism in a DFT:M06-2X/6-311++G(d,p) optimized geometry. Conclusion Considering all HF and DFT methods with GIAO calculations, TPSS and PBE1PBE were the most accurate methods used for calculation of 1H-NMR and 13C-NMR chemical shifts, which was almost similar to the B3LYP functional, followed in order by HF, M05-2X and M06-2X methods. All calculations were done using the Gaussian 09 software package. Theoretical calculations can be used to predict and confirm the structure of substituted chalcones with good correlation with the experimental data.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700