Nanostructured CuO/SrTiO3 bilayered thin films for photoelectrochemical water splitting
详细信息    查看全文
  • 作者:Surbhi Choudhary (1)
    Anjana Solanki (1)
    Sumant Upadhyay (1)
    Nirupama Singh (1)
    Vibha R. Satsangi (2)
    Rohit Shrivastav (1)
    Sahab Dass (1)
  • 关键词:Photoelectrochemical ; CuO/SrTiO3 ; Bilayered ; Sol–gel spin ; coating technique
  • 刊名:Journal of Solid State Electrochemistry
  • 出版年:2013
  • 出版时间:September 2013
  • 年:2013
  • 卷:17
  • 期:9
  • 页码:2531-2538
  • 全文大小:499KB
  • 参考文献:1. Dresselhaus MS, Thomas IL (2001) Alternative energy technologies. Nature 414:332-37 CrossRef
    2. Lewis SN (2001) Light work with water. Nature 414:589-90 CrossRef
    3. Gratzel M (2001) Photoelectrochemical cells. Nature 414:338-44 CrossRef
    4. Marsen B, Miller EL, Paluselli D, Rocheleau RE (2007) Progress in sputtered tungsten trioxide for photoelectrode applications. Int J Hydrogen Energ 32:3110-115 CrossRef
    5. Khaselev O, Bansal A, Turner JA (2001) High-efficiency integrated multijunction photovoltaic/electrolysis systems for hydrogen production. Int J Hydrogen Energ 26:127-32 CrossRef
    6. Mishra PR, Shukla PK, Singh AK, Srivastava ON (2003) Investigation and optimization of nanostructured TiO2 photoelectrode in regard to hydrogen production through photoelectrochemical process. Int J Hydrogen Energ 28:1089-094
    7. Li Y, Zhang JZ (2010) Hydrogen generation from photoelectrochemical water splitting based on nanomaterials. Laser & Photonics Reviews 4:517-28 CrossRef
    8. Kale SS, Mane RS, Ganesh T, Pawar BN, Han SH (2009) Multiple band gap energy layered electrode for photoelectrochemical cells. Curr Appl Phys 9:384-89 CrossRef
    9. El-Zayat MY, Saed AO, El-Dessouki MS (1998) Photoelectrochemical properties of dye sensitized Zr-doped SrTiO3 electrodes. Int J Hydrogen Energ 23:259-66 CrossRef
    10. Zou ZG, Ye JH, Arakawa H (2003) Photocatalytic water splitting into H2 and/or O2 under UV and visible light irradiation with a semiconductor photocatalyst. Int J Hydrogen Energ 28:663-69 CrossRef
    11. Mavroides JG, Kafalas JA, Kolesar DF (1976) Photoelectrolysis of water in cells with SrTiO3 anodes. Appl Phys Lett 28:241-43 CrossRef
    12. Ohya Y, Ito S, Ban T, Takahashi Y (2000) Preparation of CuO thin films and their electrical conductivity. Key Eng Mater 181:113-16 CrossRef
    13. Jeong YK, Choi GM (1996) Nonstoichiometry and electrical conduction of CuO. J Phys Chem Solids 57:81 CrossRef
    14. Diamant Y, Chappel S, Chen SG, Melamed O, Zaban A (2004) Core-shell nanoporous electrode for dye sensitized solar cells: the effect of shell characteristics on the electronic properties of the electrode. Coord Chem Rev 248:1271-276 CrossRef
    15. Zhong M, Shi J, Xiong F, Zhang W, Li C (2012) Enhancement of photoelectrochemical activity of nanocrystalline CdS photoanode by surface modification with TiO2 for hydrogen production and electricity generation. Solar Energy 86:756-63 CrossRef
    16. Solanki A, Shrivastav J, Upadhyay S, Sharma V, Sharma P, Kumar P, Gaskell K, Satsangi VR, Shrivastav R, Dass S (2011) Irradiation-induced modifications and PEC response—a case study of SrTiO3 thin films irradiated by 120 MeV Ag9+ ions. Int J Hydrogen Energ 36:5236-245 CrossRef
    17. Chiang C-Y, Aroh K, Franson N, Satsangi VR, Dass S, Ehrman S (2011) Copper oxide nanoparticle made by flame spray pyrolysis for photoelectrochemical water splitting—part II. Photoelectrochemical study. Int J Hydrogen Energ 36:15519-5526 CrossRef
    18. Kumari S, Chaudhary YS, Agnihotry SA, Tripathi C, Verma A, Chauhan D, Satsangi VR, Shrivastav R, Dass S (2007) A photoelectrochemical study of nanostructured Cd-doped titanium oxide. Int J Hydrogen Energ 32:1299-302 CrossRef
    19. Ashrafi A, Jagdish C (2007) Review of zincblende ZnO: stability of metastable ZnO phases. J Appl Phys 102:071101-2 CrossRef
    20. Kimura T, Sekio Y, Nakamura H, Siegrist T, Ramirez P (2008) Cupric oxide as an induced-multiferroic with high- / T C. Nat Mater 7:291-94 CrossRef
    21. Zanetti SM, Leite ER, Longo E, Varela JA (1999) Cracks developed during SrTiO3 thin-film preparation from polymeric precursors. Appl Organomet Chem 13:373-82 CrossRef
    22. Luo W, Yu T, Wang Y, Li Z, Ye J, Zou Z (2007) Enhanced photocurrent–voltage characteristics of WO3/Fe2O3 nano-electrodes. J Phys D: Appl Phys 40:1091-109 CrossRef
    23. Nasr C, Kamat PV, Hotchandani S (1997) Photoelectrochemical behavior of coupled SnO2/CdSe nanocrystalline semiconductor films. J Electroanal Chem 420:201-07 CrossRef
    24. Dang TC, Pham DL, Le HC, Pham VH (2010) TiO2/CdS nanocomposite films: fabrication, characterization, electronic and optical properties. Adv Nat Sci: Nanosci Nanotechnol 1:015002-6 CrossRef
    25. Chi YJ, Fu HG, Qi LH, Shi KY, Zhang HB, Yu HT (2008) Preparation and photoelectric performance of ITO/TiO2/CdS composite thin films. J Photochem Photobiol A: Chem 195:357-63 CrossRef
    26. Chi C-F, Lee Y-L, Weng H-S (2008) A CdS-modified TiO2 nanocrystalline photoanode for efficient hydrogen generation by visible light. Nanotechnology 19:125704-8 CrossRef
    27. Dang TC, Pham DL, Nguyen HL, Pham VH (2010) CdS sensitized ZnO electrodes in photoelectrochemical cells. Adv Nat Sci: Nanosci Nanotechnol 1:035010-5 CrossRef
    28. Chiang CY, Aroh K, Franson N, Satsangi VR, Dass S, Ehrman S (2011) Copper oxide nanoparticle made by flame spray pyrolysis for photoelectrochemical water splitting—part II. Int J Hydrogen Energ 36:15519-5526 CrossRef
    29. Jiang HQ, Endo H, Natori H, Nagai M, Kobayashi K (2009) Fabrication and efficient photocatalytic degradation of methylene blue over CuO/BiVO4 composite under visible-light irradiation. Material Research Bulletin 44:700-06 CrossRef
    30. Choudhary S, Upadhyay S, Kumar P, Singh N, Satsangi VR, Shrivastav R, Dass S (2012) Nanostructured bilayered thin films in photoelectrochemical water splitting—a review. Int J Hydrogen Energ 37:18713-8730 CrossRef
    31. Baek K-K, Tuller HL (1995) Atmosphere sensitive CuO/ZnO junctions. Solid State Ionics 75:179-86 CrossRef
    32. Derbal A, Omeiri S, Bouguelia A, Trari M (2008) Characterization of new heterosystem CuFeO2/SnO2 application to visible-light induced hydrogen evolution. Int J Hydrogen Energ 33:4274-282 CrossRef
    33. Kezzim A, Nasrallah N, Abdi A, Trari M (2011) Visible light induced hydrogen on the novel hetero-system CuFe2O4/TiO2. Energy Conversion and Management 52:2800-806 CrossRef
    34. Chen L, Zhang Q, Huang R, Yin S-F, Luo S-L, Au C-T (2012) Porous peanut-like Bi2O3–BiVO4 composites with heterojunctions: one-step synthesis and their photocatalytic properties. Dalton Trans 41:9513 CrossRef
    35. Su J, Guo L, Bao N, Grimes CA (2011) Nanostructured WO3/BiVO4 heterojunction films for efficient photoelectrochemical water splitting. Nano Lett 11:1928-933 CrossRef
    36. Sharma P, Kumar P, Solanki A, Shrivastav R, Dass S, Satsangi VR (2012) Photoelectrochemical performance of bilayered Fe–TiO2/Zn–Fe2O3 thin films for solar generation of hydrogen. J Solid State Electrochem 16:1305-312 CrossRef
    37. Spadavecchia F, Cappelletti G, Ardizzone S, Ceotto M, Falciola L (2011) Electronic structure of pure and N-doped TiO2 nanocrystals by electrochemical experiments and first principles calculations. J Phys Chem C 115:6381-391 CrossRef
    38. Bolts JM, Wrighton MS (1976) Correlation of photocurrent–voltage curves with flat-band potential for stable photoelectrodes for the electrolysis of water. J Phys Chem 80:2641-646 CrossRef
    39. Mor GK, Shankar K, Paulose M, Varghese OK, Grimes CA (2005) Enhanced photocleavage of water using titania nanotube arrays. Nano Lett 5:191-95 CrossRef
  • 作者单位:Surbhi Choudhary (1)
    Anjana Solanki (1)
    Sumant Upadhyay (1)
    Nirupama Singh (1)
    Vibha R. Satsangi (2)
    Rohit Shrivastav (1)
    Sahab Dass (1)

    1. Department of Chemistry, Dayalbagh Educational Institute, Agra, 282110, India
    2. Department of Physics & Computer Sciences, Dayalbagh Educational Institute, Agra, 282110, India
文摘
Bilayered thin films of CuO/SrTiO3 with varying thickness of CuO were deposited by sol–gel spin-coating technique on indium tin oxide substrate and used as photoelectrode in the photoelectrochemical cell for water splitting reaction. Maximum photocurrent density of 1.85?mA/cm2 at ?.9?V/saturated calomel electrode was exhibited by 590-nm-thick CuO/SrTiO3 bilayered photoelectrode, which is approximately eight times higher than that for CuO and 30 times higher than that for SrTiO3. The bilayered system offered increased photocurrent density and enhanced photoconversion efficiency, attributed to improved conductivity, which ameliorate separation of the photo-generated carriers at the CuO/SrTiO3 interface and higher value of flatband potential. Details about synthesis and various characterisations involving X-ray diffraction and scanning electron microscopy have been discussed. An energy band diagram has been proposed to dwell upon the mechanism of charge carrier transfer across the interface.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700