Effect of the Mitral Valve’s Anterior Leaflet on Axisymmetry of Transmitral Vortex Ring
详细信息    查看全文
  • 作者:Ahmad Falahatpisheh ; Niema M. Pahlevan ; Arash Kheradvar
  • 关键词:Mitral valve ; Anterior leaflet ; Non ; axisymmetry ; Vortex ring
  • 刊名:Annals of Biomedical Engineering
  • 出版年:2015
  • 出版时间:October 2015
  • 年:2015
  • 卷:43
  • 期:10
  • 页码:2349-2360
  • 全文大小:2,684 KB
  • 参考文献:1.Abe, H., G. Caracciolo, A. Kheradvar, G. Pedrizzetti, B. K. Khandheria, and J. Narula. Sengupta PP. Contrast echocardiography for assessing left ventricular vortex strength in heart failure: a prospective cohort study. Eur. Heart J. Cardiovasc. Imaging 14(11):1049-060, 2013.CrossRef PubMed
    2.Carpentier, A., D. H. Adams, and F. Filsoufi. Carpentier’s Reconstructive Valve Surgery. Philadelphia: Elsevier Health Sciences, 2011.
    3.Charonko, J., R. Kumar, K. Stewart, W. Little, and P. Vlachos. Vortices formed on the mitral valve tips aid normal left ventricular filling. Ann. Biomed. Eng. 41:1049-061, 2013.CrossRef PubMed
    4.de Vecchi, A., D. A. Nordsletten, E. W. Remme, H. Bellsham-Revell, G. Greil, J. M. Simpson, R. Razavi, and N. P. Smith. Inflow typology and ventricular geometry determine efficiency of filling in the hypoplastic left heart. Ann. Thorac. Surg. 94:1562-569, 2012.CrossRef PubMed
    5.Domenichini, F. Three-dimensional impulsive vortex formation from slender orifices. J. Fluid Mech. 666:506-20, 2011.CrossRef
    6.Du, D., S. Jiang, Z. Wang, Y. Hu, and Z. He. Effects of suture position on left ventricular fluid mechanics under mitral valve edge-to-edge repair. Biomed. Mater. Eng. 24:155-61, 2014.PubMed
    7.Falahatpisheh, A., and A. Kheradvar. On axisymmetry of vortex rings. Bull. Am. Phys Soc. 59:418, 2014.
    8.Falahatpisheh, A., and A. Kheradvar. Volumetric echocardiographic particle image velocimetry (v-echo-piv). Circulation. 130:A14952, 2014.
    9.Falahatpisheh, A., and A. Kheradvar. A measure of axisymmetry for vortex rings. Eur. J. Mech. B. 49(Part A):264-71, 2015.CrossRef
    10.Falahatpisheh, A., G. Pedrizzetti, and A. Kheradvar. Three-dimensional reconstruction of cardiac flows based on multi-planar velocity fields. Experiments in Fluids. 55:1848, 2014.CrossRef
    11.Gharib, M., E. Rambod, A. Kheradvar, D. J. Sahn, and J. O. Dabiri. Optimal vortex formation as an index of cardiac health. Proc. Natl. Acad. Sci. USA 103:6305-308, 2006.PubMed Central CrossRef PubMed
    12.Gharib, M., E. Rambod, and K. Shariff. A universal time scale for vortex ring formation. J. Fluid Mech. 360:121-40, 1998.CrossRef
    13.Grinstein, F. F. Vortex dynamics and entrainment in rectangular free jets. J. Fluid Mech. 437:69-01, 2001.CrossRef
    14.Ho, C.-M., and E. Gutmark. Vortex induction and mass entrainment in a small-aspect-ratio elliptic jet. J. Fluid Mech. 179:383-05, 1987.CrossRef
    15.Hu, Y., L. Shi, S. Parameswaran, S. Smirnov, and Z. He. Left ventricular vortex under mitral valve edge-to-edge repair. Cardiovasc. Eng. Technol. 1:235-43, 2010.PubMed Central CrossRef PubMed
    16.Husain, H. S., and F. Hussain. Elliptic jets. Part 2. Dynamics of coherent structures: pairing. J. Fluid Mech. 233:439-82, 1991.CrossRef
    17.Jiamsripong, P., M. Alharthi, A. Calleja, E. McMahon, M. Katayama, J. Westerdale, M. Milano, J. Heys, F. Mookadam, and M. Belohlavek. Impact of pericardial adhesions on diastolic function as assessed by vortex formation time, a parameter of transmitral flow efficiency. Cardiovasc. Ultrasound 8:42, 2010.PubMed Central CrossRef PubMed
    18.Jiamsripong, P., A. M. Calleja, M. S. Alharthi, M. Dzsinich, E. M. McMahon, J. J. Heys, M. Milano, P. P. Sengupta, B. K. Khandheria, and M. Belohlavek. Impact of acute moderate elevation in left ventricular afterload on diastolic transmitral flow efficiency: analysis by vortex formation time. J. Am. Soc. Echocardiogr. 22:427-31, 2009.PubMed Central CrossRef PubMed
    19.Kheradvar, A., R. Assadi, A. Falahatpisheh, and P. P. Sengupta. Assessment of transmitral vortex formation in patients with diastolic dysfunction. J. Am. Soc. Echocardiogr. 25:220-27, 2012.CrossRef PubMed
    20.Kheradvar, A., and A. Falahatpisheh. The effects of dynamic saddle annulus and leaflet length on transmitral flow pattern and leaflet stress of a bileaflet bioprosthetic mitral valve. J. Heart Valve Dis. 21:225, 2012.PubMed
    21.Kheradvar, A., and M. Gharib. Influence of ventricular pressure drop on mitral annulus dynamics through the process of vortex ring formation. Ann. Biomed. Eng. 35:2050-064, 2007.CrossRef PubMed
    22.Kheradvar, A., and M. Gharib. On mitral valve dynamics and its connection to early diastolic flow. Ann. Biomed. Eng. 37:1-3, 2009.CrossRef PubMed
    23.Kheradvar, A., H. Houle, G. Pedrizzetti, G. Tonti, T. Belcik, M. Ashraf, J. R. Lindner, M. Gharib, and D. Sahn. Echocardiographic particle image velocimetry: a novel technique for quantification of left ventricular blood vorticity pattern. J. Am. Soc. Echocardiogr. 23:3102-111, 2010.CrossRef
    24.Kheradvar, A., M. Milano, and M. Gharib. Correlation between vortex ring formation and mitral annulus dynamics during ventricular rapid filling. ASAIO J. 53:8-6, 2007.CrossRef PubMed
    25.Kheradvar, A., and G. Pedrizzetti. Vortex Formation in the Cardiovascular System. New York: Springer, 2012.CrossRef
    26.Kilner, P. J., G.-Z. Yang, A. J. Wilkes, R. H. Mohiaddin, D. N.
  • 作者单位:Ahmad Falahatpisheh (1) (2)
    Niema M. Pahlevan (3) (4)
    Arash Kheradvar (1) (2)

    1. Department of Mechanical and Aerospace Engineering, University of California, Irvine, Irvine, USA
    2. Department of Biomedical Engineering, University of California, Irvine, Irvine, CA, USA
    3. Department of Medical Engineering, California Institute of Technology, Pasadena, CA, USA
    4. Huntington Medical Research Institute, Pasadena, CA, USA
  • 刊物类别:Biomedical and Life Sciences
  • 刊物主题:Biomedicine
    Biomedicine
    Biomedical Engineering
    Biophysics and Biomedical Physics
    Mechanics
    Biochemistry
  • 出版者:Springer Netherlands
  • ISSN:1573-9686
文摘
The shape and formation of transmitral vortex ring are shown to be associated with diastolic function of the left ventricle (LV). Transmitral vortex ring is a flow feature that is observed to be non-axisymmetric in a healthy heart and its inherent asymmetry in the LV assists in efficient ejection of the blood during systole. This study is a first step towards understanding the effects of the mitral valve’s anterior leaflet on transmitral flow. We experimentally study a single-leaflet model of the mitral valve to investigate the effect of the anterior leaflet on the axisymmetry of the generated vortex ring based on the three-dimensional data acquired using defocusing digital particle image velocimetry. Vortex rings form downstream of a D-shaped orifice in presence or absence of the anterior leaflet in various physiological stroke ratios. The results of the statistical analysis indicate that the formed vortex ring downstream of a D-shaped orifice is markedly non-axisymmetric, and presence of the anterior leaflet improves the ring’s axisymmetry. This study suggests that the improvement of axisymmetry in presence of the anterior leaflet might be due to coupled dynamic interaction between rolling-up of the shear layer at the edges of the D-shaped orifice and the borders of the anterior leaflet. This interaction can reduce the non-uniformity in vorticity generation, which results in more axisymmetric behavior compared to the D-shaped orifice without the anterior leaflet. Keywords Mitral valve Anterior leaflet Non-axisymmetry Vortex ring

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700