The Use of Attached Microbial Communities to Assess Ecological Risks of Pollutants in River Ecosystems: The Role of Heterotrophs
详细信息    查看全文
  • 作者:Lorenzo Proia (101)
    Fernanda Cassió (102)
    Claudia Pascoal (102)
    Ahmed Tlili (103)
    Anna M. Romaní (101)
  • 关键词:Biofilms ; Decomposers ; Ecological risk ; Heterotrophs ; Pollutants effects ; Rivers
  • 刊名:The Handbook of Environmental Chemistry
  • 出版年:2012
  • 出版时间:2012
  • 年:2012
  • 卷:1
  • 期:1
  • 页码:85-115
  • 全文大小:358KB
  • 参考文献:1. Allan JD (1995) Stream ecology. Structure and functioning of running waters. Chapman & Hall, London
    2. Zehr J (2010) Microbes in Earth’s aqueous environments. Front Microbiol, Aquat Microbiol, Volume 1, Article 4. doi:10.3389/fmicb.2010.00004
    3. Azam F, Fenche T, Field JG et al (1983) The ecological role of water-column microbes in the sea. Mar Ecol Prog Ser 10:257-63
    4. Descy J-P, Leporq B, Viroux L et al (2002) Phytoplankton production, exudation and bacterial reassimilation in the River Meuse (Belgium). J Plankton Res 24:161-66
    5. Hart DR, Stone L, Berman T (2000) Seasonal dynamics of the Lake Kinneret food web: the importance of the microbial loop. Limnol Oceanogr 45:350-61
    6. Fenchel T (2008) The microbial loop -25?years later. J Exp Mar Biol Ecol 366:99-03
    7. Pomeroy LR, Wiebe WJ (1988) Energetics of microbial food webs. Hydrobiologia 159:7-8
    8. Edwards RT, Meyer JL, Findlay SEG (1990) The relative contribution of benthic and suspended bacteria to system biomass, production, and metabolism in a low-gradient blackwater river. J N Am Benthol Soc 9:216-28
    9. Battin T, Butturini A, Sabater F (1999) Immobilization and metabolism of dissolved organic carbon by natural sediment biofilms in two climatically contrasting streams. Aquat Microb Ecol 19:297-05
    10. Romaní AM, Sabater S (1999) Epilithic ectoenzyme activity in a nutrient-rich Mediterranean river. Aquat Sci 61:122-32
    11. Lock MA (1993) Attached microbial communities in rivers. In: Ford TE (ed) Aquatic microbiology: an ecological approach. Blackwell, Oxford
    12. B?rlocher F, Murdoch JH (1989) Hyporheic biofilms—a potential food source for interstitial animals. Hydrobiologia 184:61-7
    13. Pusch M, Fiebig D, Brettar I et al (1998) The role of micro-organisms in the ecological connectivity of running waters. Freshwat Biol 40:453-95
    14. Lamberti GA (1996) The role of periphyton in benthic food webs. In: Stevenson RJ, Bothwell ML, Lowe RL (eds) Algal ecology. Freshwater benthic ecosystems. Academic, San Diego, CA
    15. Murray RE, Cooksey KE, Priscu JC (1986) Stimulation of bacterial DNA synthesis by algal exudates in attached algal-bacterial consortia. Appl Environ Microbiol 52:1177-182
    16. Artigas J (2008) The role of fungi and bacteria on the organic matter decomposition process in streams: interaction and relevance in biofilms. Ph.D. thesis
    17. Diez J, Elosegi A, Chauvet E (2002) Breakdown of wood in the Agüera stream. Freshwat Biol 47:2205-215
    18. Gulis V, Suberkropp K (2003) Effect of inorganic nutrients on relative contributions of fungi and bacteria to carbon flow from submerged decomposing leaf litter. Microb Ecol 45:11-9
    19. Pascoal C, Cássio F (2004) Contribution of fungi and bacteria to leaf litter decomposition in a polluted river. Appl Environ Microbiol 70:5266-273
    20. Findlay S, Tank J, Dye S et al (2002) A cross-system comparison of bacterial and fungal biomass in detritus pools of headwater streams. Microb Ecol 43:55-6
    21. Stevenson RJ (1996) In: Stevenson RJ, Bothwell ML, Lowe RL (eds) Algal ecology, freshwater benthic ecosystems. Academic, San Diego, CA
    22. Mathuriau C, Chauvet E (2002) Breakdown of litter in a neotropical stream. J N Am Benthol Soc 21:384-96
    23. Findlay S, Strayer D, Goumbala C et al (1993) Metabolism of streamwater dissolved organic carbon in the shallow hyporheic zone. Limnol Oceanogr 38:1493-499
    24. Sabater S, Guasch H, Ricart M et al (2007) Monitoring the effect of chemicals on biological communities. The biofilm as an interface. Anal Bioanal Chem 387:1425-434
    25. Romaní AM (2010) Freshwater biofilms. In: Dürr S, Thomason JC (eds) Biofouling, 1st edn. Wiley-Blackwell, Oxford
    26. Rier ST, Stevenson RJ (2002) Effects of light, dissolved organic carbon, and inorganic nutrients on the relationship between algae and heterotrophic bacteria in stream periphyton. Hydrobiologia 489:179-84
    27. Francoeur SN, Wetzel RG (2003) Regulation of periphytic leucine-aminopeptidase activity. Aquat Microb Ecol 31:249-58
    28. Bengtsson G (1992) Interactions between fungi, bacteria and beech leaves in a stream mesocosm. Oecologia 89:542-49
    29. Mille-Lindblom C, Tranvik LJ (2003) Antagonism between bacteria and fungi on decomposing aquatic plant litter. Microb Ecol 45:173-82
    30. Sabater S, Elosegi A (2009) Conceptos y técnicas en ecológia fluvial. Fundación BBVA, Bilbao
    31. Ducklow H (2008) Microbial services: challenges for microbial ecologists in a changing world. Aquat Microb Ecol 53:13-9
    32. Jessup CM, Kassen R, Forde SE et al (2004) Big questions, small worlds: microbial model systems in ecology. Trends Ecol Evol 19:189-97
    33. Duarte S, Pascoal C, Alves A et al (2008) Copper and zinc mixtures induce shifts in microbial communities and reduce leaf litter decomposition in streams. Freshw Biol 53:91-02
    34. Duarte S, Pascoal C, Cássio F (2009) Functional stability of stream-dwelling microbial decomposers exposed to copper and zinc stress. Freshw Biol 54:1638-691
    35. Ricart M, Guasch H, Alberch M et al (2010) Triclosan persistence through wastewater treatment plants and its potential toxic effects on river biofilms. Aquat Toxicol 100:346-53
    36. Tlili A, Bérard A, Roulier JL et al (2010) PO 4 3?/sup> dependence of the tolerance of autotrophic and heterotrophic biofilm communities to copper and diuron. Aquat Toxicol 98:165-77
    37. McMurry LM, Oethinger M, Levy SB (1998) Triclosan targets lipid synthesis. Nature 394:531-32
    38. Lawrence JR, Swerhone GDW, Topp E et al (2007) Structural and functional responses of river biofilm communities to the nonsteroidal anti-inflammatory diclofenac. Environ Toxicol Chem 26:573-82
    39. Blanck H, Admiraal W, Cleven RFMJ et al (2003) Variability in zinc tolerance, measured as incorporation of radio-labeled carbon dioxide and thymidine, in periphyton communities sampled from 15 European river stretches. Arch Environ Contam Toxicol 44:17-9
    40. Boninneau C, Guasch H, Proia L et al (2010) Fluvial biofilms: a pertinent tool to assess β-blockers toxicity. Aquat Toxicol 96:225-33
    41. Chenier MR, Beaumier D, Fortin N et al (2006) Influence of nutrient inputs, hexadecane and temporal variations on denitrification and community composition of river biofilms. Appl Environ Microbiol 72:575-84
    42. Mahmoud HMA, Goulder R, Carvalho GR (2005) The response of epilithic bacteria to different metals regime in two upland streams: assessed by conventional microbiological methods and PCR-DGGE. Arch Hydrobiol 163:405-27
    43. Watanabe K, Baker PW (2000) Environmentally relevant microorganisms. J Biosci Bioeng 89:1-1
    44. Paje MLF, Kuhlicke U, Winkler M et al (2002) Inhibition of lotic biofilms by Diclofenac. Appl Microbiol Biotechnol 59:488-92
    45. Pieper C, Risse D, Schmidt B et al (2010) Investigation of the microbial degradation of phenazone-type drugs and their metabolites by natural biofilms derived from river water using liquid chromatography/tandem mass spectrometry (LC-MS/MS). Water Res 44:4559-569
    46. B?rlocher F (2005) Freshwater fungal communities. In: Dighton J, Oudemans P, White J (eds) The fungal community, 3rd edn. CRC, Boca Raton, FL
    47. Pascoal C, Cássio F (2008) Linking fungal diversity to the functioning of freshwater ecosystems. In: Sridhar KR, B?rlocher F, Hyde KD (eds) Novel techniques and ideas in mycology. Fungal Diversity Press, Hong Kong
    48. Pascoal C, Cássio F, Marcotegui A et al (2005) The role of fungi, bacteria, and invertebrates in leaf litter breakdown in a polluted river. J N Am Benthol Soc 24:784-97
    49. Baldy V, Gobert V, Guérold F et al (2007) Leaf litter breakdown budgets in streams of various trophic status: effects of dissolved inorganic nutrients on microorganisms and invertebrates. Freshw Biol 52:1322-335
    50. Krauss G-J, Wesenberg D, Ehrman J et al (2008) Fungal responses to heavy metals. In: Sridhar S, B?rlocher F, Hyde K (eds) Novel techniques and ideas in mycology. Fungal Diversity Press, Hong Kong
    51. Sridhar KR, Krauss G, B?rlocher F et al (2001) Decomposition of alder leaves in two heavy metal-polluted streams in central Germany. Aquat Microb Ecol 26:73-0
    52. Bermingham S, Maltby L, Cooke RC (1996) Effects of a coal mine effluent on aquatic hyphomycetes. II. Laboratory toxicity experiment. J Appl Ecol 33:1311-321
    53. Medeiros AO, Rocha P, Rosa CA et al (2008) Litter breakdown in a stream affected by drainage from a gold mine. Fund Appl Limnol 172:59-0
    54. Niyogi DK, McKnight DM, Lewis WM Jr (2002) Fungal communities and biomass in mountain streams affected by mine drainage. Arch Hydrobiol 155:255-71
    55. Dangles O, Gessner MO, Guerold F et al (2004) Impacts of stream acidification on litter breakdown: implications for assessing ecosystem functioning. J Appl Ecol 41:365-78
    56. Baudoin JM, Guérold F, Felten V et al (2008) Elevated aluminium concentration in acidified headwater streams lowers aquatic hyphomycete diversity and impairs leaf-litter breakdown. Microb Ecol 56:260-69
    57. Niyogi DK, Lewis WM Jr, McKnight DM (2001) Litter breakdown in mountain streams affected by mine drainage: biotic mediation of abiotic controls. Ecol Appl 11:506-16
    58. Pascoal C, Cássio F, Marvanová L (2005) Anthropogenic stress may affect aquatic hyphomycete diversity more than leaf decomposition in a low order stream. Arch Hydrobiol 162:481-96
    59. Pradhan A, Seena S, Pascoal C et al (2011) Can increased production and usage of metal nanoparticles be a threat to freshwater microbial decomposers? Microb Ecol 62:58-8
    60. Lecerf A, Chauvet E (2008) Diversity and functions of leaf-decaying fungi in human-altered streams. Freshw Biol 53:1658-672
    61. Duarte S, Pascoal C, Cássio F (2004) Effects of zinc on leaf decomposition by fungi in streams: studies in microcosms. Microb Ecol 48:366-74
    62. Abel TH, B?rlocher F (1984) Effects of cadmium on aquatic hyphomycetes. Appl Environ Microbiol 48:245-51
    63. Moreirinha C, Duarte S, Pascoal C et al (2010) Effects of cadmium and phenanthrene mixtures on leaf-litter decomposition and associated aquatic fungi. Arch Environ Contam Toxicol 61(2):211-19
    64. Medeiros AO, Duarte S, Pascoal C et al (2010) Effects of Zn, Fe and Mn on leaf litter breakdown by aquatic fungi: a microcosm study. Int Rev Hydrobiol 95:12-6
    65. Sridhar KR, Krauss G, B?rlocher F et al (2000) Fungal diversity in heavy metal polluted waters in central Germany. In: Hyde KD, Ho WH, Pointing SB (eds) Aquatic mycology across the Millenium. Fungal Diversity Press, Hong Kong
    66. Pascoal C, Marvanová L, Cássio F (2005) Aquatic hyphomycete diversity in streams of Northwest Portugal. Fungal Divers 19:109-28
    67. Seena S, Pascoal C, Marvanová L et al (2010) DNA barcoding of fungi: a case study using ITS sequences for identifying aquatic hyphomycete species. Fungal Divers 44:77-7
    68. Fernandes I, Pascoal C, Cássio F (2011) Intraspecific traits change biodiversity effects on ecosystem functioning under metal stress. Oecologia 164(4):1019-028
    69. Hodkinson M (1976) Interactions between aquatic fungi and DDT. In: Jones EBG (ed) Recent advances in aquatic mycology. Wiley, New York
    70. Chandrashekar KR, Kaveriappa KM (1994) Effects of pesticides on sporulation and germination of conidia of aquatic hyphomycetes. J Environ Biol 15:315-24
    71. B?rlocher F, Premdas PD (1988) Effects of pentachlorophenol on aquatic hyphomycetes. Mycologia 80:135-37
    72. Junghanns C, M?der M, Krauss G et al (2005) Degradation of the xenoestrogen nonylphenol by aquatic fungi and their laccases. Microbiology 151:45-7
    73. Martin C, Moeder M, Daniel X et al (2007) Biotransformation of the polycyclic musks HHCB and AHTN and metabolite formation by fungi occurring in freshwater environments. Environ Sci Technol 41:5395-402
    74. Junghanns C, Krauss G, Schlosser D (2008) Potential of fungi derived from diverse freshwater environments to decolourise synthetic azo and anthraquinone dyes. Bioresour Technol 99:1225-235
    75. Augustin T, Schlosser D, Baumbach R et al (2006) Biotransformation of 1-naphthol by a strictly aquatic fungus. Curr Microbiol 52:216-20
    76. Freeman C, Lock MA (1995) The biofilm polysaccharide matrix: a buffer against changing organic substrate supply? Limnol Oceanogr 40:273-78
    77. Wetzel RG (1993) Microcommunities and microgradients: linking nutrient regeneration, microbial mutualism, and high sustained aquatic primary production. Neth J Aquat Ecol 27:3-
    78. Rier ST, Kuehn KA, Francoeur SN (2007) Algal regulation of extracellular enzyme activity in stream microbial communities associated with inert substrata and detritus. J N Am Benthol Soc 26:439-49
    79. Haack TK, McFeters GA (1982) Microbial dynamics of an epilithic mat community in a high alpine stream. Appl Environ Microbiol 43:702-07
    80. Kaplan LA, Bott TL (1989) Diel fluctuations in bacterial activity on streambed substrata during vernal algal blooms: effects of temperature, water chemistry, and habitat. Limnol Oceanogr 34:718-33
    81. Kühl M, Glud RN, Ploug H et al (1996) Microenvironmental control of photosynthesis and photosynthesis-coupled respiration in an epilithic syanobacterial biofilms. J Phycol 32:799-12
    82. Cole JJ (1982) Interactions between bacteria and algae in aquatic ecosystems. Annu Rev Ecol Systemat 13:291-14
    83. Croft MT, Lawrence AD, Raux-Deery E et al (2005) Algae acquire vitamin B12 through a symbiotic relationship with bacteria. Nature 438:90-3
    84. Lawrence JR, Chenier MR, Roy R et al (2004) Microscale and molecular assessment of impacts of nickel, nutrients, and oxygen level on structure and function of river biofilm communities. Appl Environ Microbiol 70:4326-339
    85. Sobczak WV, Burton TM (1996) Epilithic bacterial and algal colonization in a stream run, riffle, and pool: a test of biomass covariation. Hydrobiologia 332:159-66
    86. Findlay S, Howe K (1993) Bacterial-algal relationships in streams of the Hubbard brook experimental forest. Ecology 74:2326-336
    87. Neely RK (1994) Evidence for positive interactions between epiphytic algae and heterotrophic decomposers during the decomposition of / Typha latifolia. Arch Hydrobiol 129:443-57
    88. Espeland EM, Wetzel RG (2001) Complexation, stabilization, and UV photolysis of extracellular and surface-bound glucosidase and alkaline phosphatase: implications for biofilm microbiota. Microb Ecol 42:572-85
    89. Romaní AM, Guasch H, Mu?oz I et al (2004) Biofilm structure and function and possible implications for riverine DOC dynamics. Microb Ecol 47:316-28
    90. Scott JT, Back JA, Taylor JM et al (2008) Does nutrient enrichment decouple algal–bacterial production in periphyton? J N Am Benthol Soc 27:332-44
    91. Ylla I, Borrego C, Romaní AM et al (2009) Availability of glucose and light modulates the structure and function of a microbial biofilms. FEMS Microbiol Ecol 69:27-2
    92. Van Rensen JJS (1989) Herbicides interacting with photosystem II. In: Dodge AD (ed) Herbicides and plant metabolism. Cambridge University Press, Cambridge
    93. Proia L, Morin S, Peipoch M et al (2011) Resistance and recovery of stream biofilms to Triclosan and Diuron pulses. Sci Total Environ 409:3129-137
    94. Ricart M, Barceló D, Geiszinger A et al (2009) Effects of low concentrations of the phenylurea herbicide diuron on biofilm algae and bacteria. Chemosphere 76:1392-401
    95. Lopez-Doval JC, Ricart M, Guasch H et al (2010) Does grazing pressure modify diuron toxicity in a biofilm community? Arch Environ Contam Toxicol 58:955-62
    96. Pesce S, Fajon C, Bardot C et al (2006) Effects of the phenylurea herbicide diuron on natural riverine microbial communities in an experimental study. Aquat Toxicol 78:303-14
    97. Tlili A, Dorigo U, Montuelle B et al (2008) Responses of chronically contaminated biofilms to short pulses of diuron. An experimental study simulating flooding events in a small river. Aquat Toxicol 87:252-63
    98. Capdevielle M, Van Egmond R, Whelan M et al (2008) Consideration of exposure and species sensitivity of triclosan in the freshwater environment. Integr Environ Assess Manag 4:15-3
    99. Franz S, Altenburger R, Heilmeier H et al (2008) What contributes to the sensitivity of microalgae to triclosan? Aquat Toxicol 90:102-08
    100. Lawrence JR, Zhu B, Swerhone GDW et al (2009) Comparative microscale analysis of the effects of triclosan and triclocarban on the structure and function of river biofilm communities. Sci Total Environ 407:3307-316
    101. Wilson BA, Smith V, Denoyelles F Jr et al (2003) Effects of three pharmaceutical and personal care products on natural freshwater algal assemblages. Environ Sci Technol 37:1713-719
    102. Barranguet C, Van den Ende FP, Rutgers M et al (2003) Copper-induced modifications of the trophic relations in riverine algal-bacterial biofilms. Environ Toxicol Chem 22:1340-349
    103. Dorigo U, Leboulanger C, Bèrard A et al (2007) Lotic biofilm community structure and pesticide tolerance along a contamination gradient in a vineyard area. Aquat Microb Ecol 50:91-02
    104. Brake SS, Hasiotis ST (2010) Eukaryote-dominated biofilms and their significance in acidic environments. Geomicrobiol J 27:534-58
    105. Romaní AM, Fischer H, Mille-Lindblom C et al (2006) Interactions of bacteria and fungi on decomposing litter: differential extracellular enzyme activities. Ecology 87:2559-569
    106. Gulis V, Stephanovich AI (1999) Antibiotic effects of some aquatic hyphomycetes. Mycol Res 103:111-15
    107. Pascoal C, Cássio F, Nikolcheva LG et al (2010) Realized fungal diversity increases functional stability of leaf-litter decomposition under zinc stress. Microb Ecol 59:84-3
    108. Roussel H, Chauvet E, Bonzom JM (2008) Alteration of leaf decomposition in copper-contaminated freshwater mesocosms. Environ Toxicol Chem 27:637-44
    109. Bermingham S, Fisher PJ, Martin A et al (1998) The effect of the herbicide mecoprop on / Heliscus lugdunensis and its influence on the preferential feeding of / Gammarus pseudolimnaeus. Microb Ecol 35:199-04
    110. Bundschuh M, Hahn T, Gessner MO et al (2009) Antibiotics as a chemical stressor affecting an aquatic decomposer-detritivore system. Environ Toxicol Chem 28:197-03
    111. Joubert LM, Wolfaardt GM, Botha A (2006) Microbial exopolymers link predator and prey in a model yeast biofilm system. Microb Ecol 52:187-97
    112. Matz C, Kjelleberg S (2005) Off the hook-how bacteria survive protozoan grazing. Trends Microbiol 13:302-07
    113. Friberg-Jensen UL, Wendt-Rasch WP et al (2003) Effects of the pyrethroid insecticide, cypermethrin, on a freshwater community studied under field conditions. I. Direct and indirect effects on abundance measures of organisms at different trophic levels. Aquat Toxicol 63:357-71
    114. Mortimera M, Kasemets K, Kahrua A (2010) Toxicity of ZnO and CuO nanoparticles to ciliated protozoa / Tetrahymena thermophila. Toxicology 269:182-89
    115. Rico D, Martín-González A, Díaz S et al (2009) Heavy metals generate reactive oxygen species in terrestrial and aquatic ciliated protozoa. Comp Biochem Physiol C Toxicol Pharmacol 149:90-6
    116. St. Denis CH, Pinheiro MDO, Power ME et al (2010) Effect of salt and urban water samples on bacterivory by the ciliate, / Tetrahymena thermophila. Environ Pollut 158:502-07
    117. Rehman A, Shakoori FR, Shakoori AR (2008) Heavy metal resistant freshwater ciliate, / Euplotes mutabilis, isolated from industrial effluents has potential to decontaminate wastewater of toxic metals. Bioresour Technol 99:3890-895
    118. Rabiet M, Margoum C, Gouy V et al (2010) Assessing pesticide concentrations and fluxes in the stream of a small vineyard catchment—effect of sampling frequency. Environ Pollut 158:737-48
    119. Sabater S, Tockner K (2010) Effects of hydrologic alterations on the ecological quality of river ecosystems. In: Sabater S, Barceló D (eds) Water scarcity in the Mediterranean: perspectives under global change. Springer, Berlin
    120. Balvanera P, Pfisterer AB, Buchmann N et al (2006) Quantifying the evidence for biodiversity effects on ecosystem functioning and services. Ecol Lett 9:1146-156
    121. Hector A, Bagchi R (2007) Biodiversity and ecosystem multifunctionality. Nature 448:188-91
    122. Clements WH, Newman MC (2002) Community ecotoxicology. Wiley, Chichester
    123. Solé M, Fetzer I, Wennrich R et al (2008) Aquatic hyphomycete communities as potential bioindicators for assessing anthropogenic stress. Sci Total Environ 389:557-65
    124. Cheng ZL, Andre P, Chiang C (1997) Hyphomycetes and macroinvertebrates colonizing leaf litter in two belgian streams with contrasting water quality. Limnetica 13:57-3
    125. Morin S, Proia L, Ricart M et al (2010) Effects of a bactericide on the structure and survival of benthic diatom communities. Vie Milieu 60:107-14
    126. Cazelles B, Fontvieille D, Chau NP (1991) Self-purification in a lotic ecosystem: a model of dissolved organic carbon and benthic microorganisms dynamics. Ecol Model 58:91-17
    127. Lawrence JR, Zhu B, Swerhone GDW et al. (2008) Community-Level Assessment of the Effects of the Broad-Spectrum Antimicrobial Chlorhexidine on the Outcome of River Microbial Biofilm Development. Appl Environ Microb 74:3541-550
    128. DeLorenzo ME, Lauth J, Pennington PL et al. (1999) Atrazine effects on the microbial food web in tidal creek. Aquat Toxicol 46:241-51
  • 作者单位:Lorenzo Proia (101)
    Fernanda Cassió (102)
    Claudia Pascoal (102)
    Ahmed Tlili (103)
    Anna M. Romaní (101)

    101. Institut d’Ecologia Aquàtica, Universitat de Girona, Girona, Espanya
    102. Departamento de Biologia, Universidade do Minho, Braga, Portugal
    103. CEMAGREF, Lyon, France
文摘
The aim of this chapter is to highlight the importance of microbial attached communities in the assessment of the effects of pollutants on freshwater ecosystems. We particularly focus on the role of heterotrophs in biofilms developing on different substrata. Firstly, an overview of the importance of microbial communities for the whole ecosystem processes is given, focusing on bacteria and fungi either living in consortia with autotrophs or as the microbial decomposing community on plant litter in river ecosystems. A series of detailed examples of direct effects of priority and emerging pollutants on bacteria in epilithic biofilms and on attached decomposers are included. Microbial ecological interactions between organisms in heterogeneous complex communities are highlighted describing the indirect effects observed in a series of study cases. A collection of laboratory and field study data is used to demonstrate the relevance of natural heterogeneous communities to obtain a more realistic approach to ecosystem processes. Finally, an upscaling from the effects observed at the microbial scale to the potential implication for ecosystems health and risk is included.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700