Identification of lanthionine and lysinoalanine in heat-treated wheat gliadin and bovine serum albumin using tandem mass spectrometry with higher-energy collisional dissociation
详细信息    查看全文
  • 作者:Ine Rombouts ; Marlies A. Lambrecht ; Sebastien C. Carpentier ; Jan A. Delcour
  • 关键词:Protein cross ; links ; Orbitrap ; LC–ESI–MS/MS ; Higher ; energy collisional dissociation ; β ; Elimination ; Michael addition
  • 刊名:Amino Acids
  • 出版年:2016
  • 出版时间:April 2016
  • 年:2016
  • 卷:48
  • 期:4
  • 页码:959-971
  • 全文大小:1,035 KB
  • 参考文献:Anon (1989) Mechanism of toxicity of lysinoalanine. Nutr Rev 47(11):362–364
    AOAC (1995) Protein (crude) in animal feed: combustion method (990.03). In: AOAC (ed) Official methods of analysis, 16th edn. Association of Official Analytical Chemists, Washington
    Arntfield SD, Murray ED, Ismond MAH (1991) Role of disulfide bonds in determining the rheological and microstructural properties of heat-induced protein networks from ovalbumin and vicilin. J Agric Food Chem 39(8):1378–1385CrossRef
    Bachi A, Dalle-Donne I, Scaloni A (2012) Redox proteomics: chemical principles, methodological approaches and biological/biomedical promises. Chem Rev 113(1):596–698CrossRef PubMed
    Delcour JA, Joye IJ, Pareyt B, Wilderjans E, Brijs K, Lagrain B (2012) Wheat gluten functionality as a quality determinant in cereal-based food products. Ann Rev Food Sci Technol 3(1):469–492CrossRef
    Friedman M (1999) Chemistry, biochemistry, nutrition, and microbiology of lysinoalanine, lanthionine, and histidinoalanine in food and other proteins. J Agric Food Chem 47(4):1295–1319CrossRef PubMed
    Fukao M, Obita T, Yoneyama F, Kohda D, Zendo T, Nakayama J, Sonomoto K (2008) Complete covalent structure of nisin Q, new natural nisin variant, containing post-translationally modified amino acids. Biosci Biotechnol Biochem 72(7):1750–1755CrossRef PubMed
    Gerrard JA (2002) Protein-protein crosslinking in food: methods, consequences, applications. Trends Food Sci Tech 13(12):391–399CrossRef
    Ghate V, Leong AL, Kumar A, Bang WS, Zhou WB, Yuk HG (2015) Enhancing the antibacterial effect of 461 and 521 nm light emitting diodes on selected foodborne pathogens in trypticase soy broth by acidic and alkaline pH conditions. Food Microbiol 48:49–57CrossRef PubMed
    Guedes S, Vitorino R, Domingues R, Amado F, Domingues P (2009) Oxidation of bovine serum albumin: identification of oxidation products and structural modifications. Rapid Commun Mass Spectrom 23(15):2307–2315CrossRef PubMed
    Hasegawa K, Mukai K, Gotoh M, Honjo S, Matoba T (1987) Determination of the lysinoalanine content in commercial foods by gas chromatography-selected ion monitoring. Agric Biol Chem 51(11):2889–2894CrossRef
    Jacob C, Battaglia E, Burkholz T, Peng D, Bagrel D, Montenarh M (2011) Control of oxidative posttranslational cysteine modifications: from intricate chemistry to widespread biological and medical applications. Chem Res Toxicol 25(3):588–604CrossRef PubMed
    Jiang J, Xiong YL, Newman MC, Rentfrow GK (2012) Structure-modifying alkaline and acidic pH-shifting processes promote film formation of soy proteins. Food Chem 132(4):1944–1950CrossRef
    Kaletta C, Entian KD, Jung G (1991) Prepeptide sequence of cinnamycin (Ro 09-0198)—the 1st structural gene of a duramycin-type lantibiotic. Eur J Biochem 199(2):411–415CrossRef PubMed
    Kearns JE, Maclaren JA (1979) Lanthionine cross-links and their effects in solubility tests on wool. J Textile Instit 70(12):534–536CrossRef
    Kellner R, Jung G, Hörner T, Zähner H, Schnell N, Entian K-D, Götz F (1988) Gallidermin: a new lanthionine-containing polypeptide antibiotic. Eur J Biochem 177(1):53–59CrossRef PubMed
    Kleinnijenhuis AJ, Duursma MC, Breukink E, Heeren RM, Heck AJ (2003) Localization of intramolecular monosulfide bridges in lantibiotics determined with electron capture induced dissociation. Anal Chem 75(13):3219–3225CrossRef PubMed
    Liener IE (1994) Implications of antinutritional components in soybean foods. Crit Rev Food Sci Nutr 34(1):31–67CrossRef PubMed
    Lindsay MP, Skerritt JH (1999) The glutenin macropolymer of wheat flour doughs: structure-function perspectives. Trends Food Sci Tech 10(8):247–253CrossRef
    Lowe EK, Anema SG, Bienvenue A, Boland MJ, Creamer LK, Jimenez-Flores R (2004) Heat-induced redistribution of disulfide bonds in milk proteins. 2. Disulfide bonding patterns between bovine beta-lactoglobulin and kappa-casein. J Agric Food Chem 52(25):7669–7680CrossRef PubMed
    Marsilio V, Lanza B (1995) Effects of lye-treatment on the nutritional and microstructural characteristics of table olives (Olea europea L.). Rev Esp Cienc Technol Aliment 35(2):178–190
    Opstvedt J, Miller R, Hardy RW, Spinelli J (1984) Heat-induced changes in sulfhydryl groups and disulfide bonds in fish protein and their effect on protein and amino acid digestibility in rainbow trout (Salmo gairdneri). J Agric Food Chem 32(4):929–935CrossRef
    Pfaender P (1983) Lysinoalanine—a toxic compound in processed proteinaceous foods. World Rev Nutr Diet 41:97–109CrossRef PubMed
    Reddie KG, Carroll KS (2008) Expanding the functional diversity of proteins through cysteine oxidation. Curr Opin Chem Biol 12(6):746–754CrossRef PubMed
    Rombouts I, Lamberts L, Celus I, Lagrain B, Brijs K, Delcour JA (2009) Wheat gluten amino acid composition analysis by high-performance anion-exchange chromatography with integrated pulsed amperometric detection. J Chromatogr A 1216(29):5557–5562CrossRef PubMed
    Rombouts I, Lagrain B, Brijs K, Delcour JA (2010) Beta-elimination reactions and formation of covalent cross-links in gliadin during heating at alkaline pH. J Cereal Sci 52(3):362–367CrossRef
    Rombouts I, Lagrain B, Brijs K, Delcour JA (2012) Cross-linking of wheat gluten proteins during production of hard pretzels. Amino Acids 42(6):2429–2438CrossRef PubMed
    Rombouts I, Lagrain B, Brunnbauer M, Delcour JA, Koehler P (2013) Improved identification of wheat gluten proteins through alkylation of cysteine residues and peptide-based mass spectrometry. Sci Rep 3:2279. doi:10.​1038/​srep02279 CrossRef PubMed PubMedCentral
    Rombouts I, Lagrain B, Scherf KA, Koehler P, Delcour JA (2015) Formation and reshuffling of disulfide bonds in bovine serum albumin demonstrated using tandem mass spectrometry with collision-induced and electron-transfer dissociation. Sci Rep 5:12210. doi:10.​1038/​srep12210 CrossRef PubMed PubMedCentral
    Silva AMN, Vitorino R, Domingues MRM, Spickett CM, Domingues P (2013) Post-translational modifications and mass spectrometry detection. Free Radical Bio Med 65:925–941CrossRef
    Su D, Gaffrey MJ, Guo J, Hatchell KE, Chu RK, Clauss TRW, Aldrich JT, Wu S, Purvine S, Camp DG, Smith RD, Thrall BD, Qian W-J (2014) Proteomic identification and quantification of S-glutathionylation in mouse macrophages using resin-assisted enrichment and isobaric labeling. Free Radical Bio Med 67:460–470CrossRef
    Thakur S, Balaram P (2009) Characterization of alkali induced formation of lanthionine, trisulfides, and tetrasulfides from peptide disulfides using negative ion mass spectrometry. J Am Soc Mass Spectr 20(5):783–791CrossRef
    Thomas JA, Mallis RJ (2001) Aging and oxidation of reactive protein sulfhydryls. Exp Gerontol 36(9):1519–1526CrossRef PubMed
    Tou JS, Violand BN, Chen ZY, Carroll JA, Schlittler MR, Egodage K, Poruthoor S, Lipartito C, Basler DA, Cagney JW, Storrs SB (2009) Two novel bovine somatotropin species generated from a common dehydroalanine intermediate. Protein J 28(2):87–95CrossRef PubMed
    Trivedi MV, Laurence JS, Siahaan TJ (2009) The role of thiols and disulfides in protein chemical and physical stability. Curr Protein Pept Sc 10(6):614–625CrossRef
    Wall JS (1971) Disulfide bonds. Determination, location, and influence on molecular properties of proteins. J Agric Food Chem 19(4):619–625CrossRef PubMed
    Wang YC, Peterson SE, Loring JF (2014) Protein post-translational modifications and regulation of pluripotency in human stem cells. Cell Res 24(2):143–160CrossRef PubMed PubMedCentral
    Zhang L, Chou CP, Moo-Young M (2011) Disulfide bond formation and its impact on the biological activity and stability of recombinant therapeutic proteins produced by Escherichia coli expression system. Biotechnol Adv 29(6):923–929CrossRef PubMed
  • 作者单位:Ine Rombouts (1)
    Marlies A. Lambrecht (1)
    Sebastien C. Carpentier (2) (3)
    Jan A. Delcour (1)

    1. Laboratory of Food Chemistry and Biochemistry and Leuven Food Science and Nutrition Research Centre (LFoRCe), KU Leuven, Kasteelpark Arenberg 20, Box 2463, 3001, Leuven, Belgium
    2. Laboratory for Tropical Crop Improvement, KU Leuven, Willem de Croylaan 42, Box 2455, 3001, Leuven, Belgium
    3. Facility for SYstems BIOlogy Based MAss Spectrometry, Herestraat 49, 3000, Leuven, Belgium
  • 刊物类别:Biomedical and Life Sciences
  • 刊物主题:Life Sciences
    Biochemistry
    Analytical Chemistry
    Biochemical Engineering
    Life Sciences
    Proteomics
    Neurobiology
  • 出版者:Springer Wien
  • ISSN:1438-2199
文摘
The present manuscript reports on the identification of various dehydroamino acid-derived bonds and cross-links resulting from thermal treatment (excess water, 240 min, 130 °C) of two model food proteins, bovine serum albumin, and wheat gliadin. S-Carbamidomethylated tryptic and chymotryptic digests of unheated (control) and heated serum albumin and gliadin, respectively, were analyzed by liquid chromatography coupled to tandem mass spectrometry (LC–ESI–MS/MS) with higher-energy collisional dissociation (HCD). Heat-induced β-elimination of cystine, serine and threonine, and subsequent Michael addition of cysteine and lysine to dehydroalanine and 3-methyl-dehydroalanine were demonstrated. Lanthionine, lysinoalanine, 3-methyl-lanthionine, and 3-methyl-lysinoalanine were identified. The detection of inter-chain lanthionine in both bovine serum albumin and wheat gliadin suggests the significance of these cross-links for food texture.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700