Global gene expression profiling identifies ALDH2, CCNE1 and SMAD3 as potential prognostic markers in upper tract urothelial carcinoma
详细信息    查看全文
  • 作者:Song Wu (1) (2) (3) (4)
    Jiahao Chen (5) (9)
    Pei Dong (3)
    Shiqiang Zhang (2)
    Yingying He (6)
    Liang Sun (2)
    Jialou Zhu (5)
    Yanbing Cheng (5)
    Xianxin Li (6)
    Aifa Tang (2)
    Yi Huang (2)
    Yaoting Gui (6)
    Chunxiao Liu (7)
    Guosheng Yang (8)
    Fangjian Zhou (3)
    Zhiming Cai (2) (4)
    Rongfu Wang (1)

    1. Institute of Immunology
    ; Zhongshan School of Medicine ; Sun Yat-sen University ; Guangzhou ; Guangdong ; 510060 ; China
    2. Shenzhen Second People鈥檚 Hospital
    ; The First Affiliated Hospital of Shenzhen University ; Shenzhen ; Guangdong ; 518035 ; China
    3. Department of Urology
    ; Sun Yat-Sen University Cancer Center ; Guangzhou ; Guangdong ; 510060 ; China
    4. National-regional Key Technology Engineering Laboratory for Clinical Application of Cancer Genomics
    ; Shenzhen Key Laboratory of Genitourinary Tumor ; Shenzhen ; Guangdong ; 518036 ; China
    5. BGI-Shenzhen
    ; Shenzhen ; Guangdong ; 518083 ; China
    9. Department of Cell Biology
    ; Albert Einstein College of Medicine ; Bronx ; NY ; 10461 ; USA
    6. Guangdong and Shenzhen Key Laboratory of Male Reproductive Medicine and Genetics
    ; Institute of Urology ; Peking University Shenzhen Hospital ; Shenzhen PKU-HKUST Medical Center ; Shenzhen ; Guangdong ; 518036 ; China
    7. Department of Urology
    ; Zhujiang Hospital ; Southern Medical University ; Guangzhou ; 510282 ; China
    8. Department of Urology
    ; Guangzhou Second People鈥檚 Hospital ; Guangzhou ; Guangdong ; 510282 ; China
  • 关键词:Upper tract urothelial carcinoma of renal pelvis ; Global gene expression profiling ; ALDH2 ; CCNE1 ; SMAD3 ; Prognosis
  • 刊名:BMC Cancer
  • 出版年:2014
  • 出版时间:December 2014
  • 年:2014
  • 卷:14
  • 期:1
  • 全文大小:1,191 KB
  • 参考文献:1. Tawfiek, ER, Bagley, DH (1997) Upper-tract transitional cell carcinoma. Urology 50: pp. 321-329 CrossRef
    2. Chow, WH, Dong, LM, Devesa, SS (2010) Epidemiology and risk factors for kidney cancer. Nat Rev Urol 7: pp. 245-257 CrossRef
    3. Novara, G, De Marco, V, Gottardo, F, Dalpiaz, O, Bouygues, V, Galfano, A, Martignoni, G, Patard, JJ, Artibani, W, Ficarra, V (2007) Independent predictors of cancer-specific survival in transitional cell carcinoma of the upper urinary tract: multi-institutional dataset from 3 European centers. Cancer 110: pp. 1715-1722 CrossRef
    4. Lughezzani, G, Burger, M, Margulis, V, Matin, SF, Novara, G, Roupret, M, Shariat, SF, Wood, CG, Zigeuner, R (2012) Prognostic factors in upper urinary tract urothelial carcinomas: a comprehensive review of the current literature. Eur Urol 62: pp. 100-114 CrossRef
    5. Stewart, GD, Bariol, SV, Grigor, KM, Tolley, DA, McNeill, SA (2005) A comparison of the pathology of transitional cell carcinoma of the bladder and upper urinary tract. BJU Int 95: pp. 791-793 CrossRef
    6. Yates, DR, Catto, JW (2013) Distinct patterns and behaviour of urothelial carcinoma with respect to anatomical location: how molecular biomarkers can augment clinico-pathological predictors in upper urinary tract tumours. World J Urol 31: pp. 21-29 CrossRef
    7. Catto, JW, Azzouzi, A-R, Rehman, I, Feeley, KM, Cross, SS, Amira, N, Fromont, G, Sibony, M, Cussenot, O, Meuth, M (2005) Promoter hypermethylation is associated with tumor location, stage, and subsequent progression in transitional cell carcinoma. J Clin Oncol 23: pp. 2903-2910 CrossRef
    8. Catto, JW, Azzouzi, A-R, Amira, N, Rehman, I, Feeley, KM, Cross, SS, Fromont, G, Sibony, M, Hamdy, FC, Cussenot, O (2003) Distinct patterns of microsatellite instability are seen in tumours of the urinary tract. Oncogene 22: pp. 8699-8706 CrossRef
    9. Li, X, Chen, J, Hu, X, Huang, Y, Li, Z, Zhou, L, Tian, Z, Ma, H, Wu, Z, Chen, M, Han, Z, Peng, Z, Zhao, X, Liang, C, Wang, Y, Sun, L, Zhao, J, Jiang, B, Yang, H, Gui, Y, Cai, Z, Zhang, X (2011) Comparative mRNA and microRNA expression profiling of three genitourinary cancers reveals common hallmarks and cancer-specific molecular events. PLoS one 6: pp. e22570 CrossRef
    10. Lapointe, J, Li, C, Higgins, JP, van de Rijn, M, Bair, E, Montgomery, K, Ferrari, M, Egevad, L, Rayford, W, Bergerheim, U, Ekman, P, DeMarzo, AM, Tibshirani, R, Botstein, D, Brown, PO, Brooks, JD, Pollack, JR (2004) Gene expression profiling identifies clinically relevant subtypes of prostate cancer. Proc Natl Acad Sci U S A 101: pp. 811-816 CrossRef
    11. Wu, S, Lv, Z, Wang, Y, Sun, L, Jiang, Z, Xu, C, Zhao, J, Sun, X, Li, X, Hu, L, Tang, A, Gui, Y, Zhou, F, Cai, Z, Wang, R (2013) Increased expression of pregnancy up-regulated non-ubiquitous calmodulin kinase is associated with poor prognosis in clear cell renal cell carcinoma. PLoS One 8: pp. e59936 CrossRef
    12. Morrissy, AS, Morin, RD, Delaney, A, Zeng, T, McDonald, H, Jones, S, Zhao, Y, Hirst, M, Marra, MA (2009) Next-generation tag sequencing for cancer gene expression profiling. Genome Res 19: pp. 1825-1835 CrossRef
    13. Zhou, L, Chen, J, Li, Z, Li, X, Hu, X, Huang, Y, Zhao, X, Liang, C, Wang, Y, Sun, L, Shi, M, Xu, X, Shen, F, Chen, M, Han, Z, Peng, Z, Zhai, Q, Chen, J, Zhang, Z, Yang, R, Ye, J, Guan, Z, Yang, H, Gui, Y, Wang, J, Cai, Z, Zhang, X (2010) Integrated profiling of microRNAs and mRNAs: microRNAs located on Xq27.3 associate with clear cell renal cell carcinoma. PLoS One 5: pp. e15224 CrossRef
    14. Hegedus, Z, Zakrzewska, A, Agoston, VC, Ordas, A, Racz, P, Mink, M, Spaink, HP, Meijer, AH (2009) Deep sequencing of the zebrafish transcriptome response to mycobacterium infection. Mol Immunol 46: pp. 2918-2930 CrossRef
    15. Li, R, Yu, C, Li, Y, Lam, TW, Yiu, SM, Kristiansen, K, Wang, J (2009) SOAP2: an improved ultrafast tool for short read alignment. Bioinformatics 25: pp. 1966-1967 CrossRef
    16. Audic, S, Claverie, JM (1997) The significance of digital gene expression profiles. Genome Res 7: pp. 986-995
    17. Benjamini, Y, Hochberg, Y (1995) Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Stat Soc Ser B Methodol 57: pp. 289-300
    18. Eisen, MB, Spellman, PT, Brown, PO, Botstein, D (1998) Cluster analysis and display of genome-wide expression patterns. Proc Natl Acad Sci U S A 95: pp. 14863-14868 CrossRef
    19. Bindea, G, Mlecnik, B, Hackl, H, Charoentong, P, Tosolini, M, Kirilovsky, A, Fridman, WH, Pages, F, Trajanoski, Z, Galon, J (2009) ClueGO: a cytoscape plug-in to decipher functionally grouped gene ontology and pathway annotation networks. Bioinformatics 25: pp. 1091-1093 CrossRef
    20. Shannon, P, Markiel, A, Ozier, O, Baliga, NS, Wang, JT, Ramage, D, Amin, N, Schwikowski, B, Ideker, T (2003) Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res 13: pp. 2498-2504 CrossRef
    21. Subramanian, A, Tamayo, P, Mootha, VK, Mukherjee, S, Ebert, BL, Gillette, MA, Paulovich, A, Pomeroy, SL, Golub, TR, Lander, ES, Mesirov, JP (2005) Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc Natl Acad Sci U S A 102: pp. 15545-15550 CrossRef
    22. Kanehisa, M, Goto, S (2000) KEGG: kyoto encyclopedia of genes and genomes. Nucleic Acids Res 28: pp. 27-30 CrossRef
    23. Warde-Farley, D, Donaldson, SL, Comes, O, Zuberi, K, Badrawi, R, Chao, P, Franz, M, Grouios, C, Kazi, F, Lopes, CT, Maitland, A, Mostafavi, S, Montojo, J, Shao, Q, Wright, G, Bader, GD, Morris, Q (2010) The GeneMANIA prediction server: biological network integration for gene prioritization and predicting gene function. Nucleic Acids Res 38: pp. W214-W220 CrossRef
    24. Wu, S, Wang, Y, Sun, L, Zhang, Z, Jiang, Z, Qin, Z, Han, H, Liu, Z, Li, X, Tang, A, Gui, Y, Cai, Z, Zhou, F (2011) Decreased expression of dual-specificity phosphatase 9 is associated with poor prognosis in clear cell renal cell carcinoma. BMC Cancer 11: pp. 413 CrossRef
    25. Mazeman, E (1976) Tumours of the upper urinary tract calyces, renal pelvis and ureter. Eur Urol 2: pp. 120-126
    26. Anderstr枚m, C, Johansson, S, Pettersson, S, Wahlqvist, L (1989) Carcinoma of the ureter: a clinicopathologic study of 49 cases. J Urol 142: pp. 280-283
    27. Izquierdo, L, Mengual, L, Gazquez, C, Ingelmo-Torres, M, Alcaraz, A (2010) Molecular characterization of upper urinary tract tumours. BJU Int 106: pp. 868-872 CrossRef
    28. Zhang, Z, Furge, KA, Yang, XJ, Teh, BT, Hansel, DE (2010) Comparative gene expression profiling analysis of urothelial carcinoma of the renal pelvis and bladder. BMC Med Genet 3: pp. 58
    29. Linehan, WM, Srinivasan, R, Schmidt, LS (2010) The genetic basis of kidney cancer: a metabolic disease. Nature reviews Urology 7: pp. 277-285 CrossRef
    30. Seitz, HK, Stickel, F (2007) Molecular mechanisms of alcohol-mediated carcinogenesis. Nat Rev Cancer 7: pp. 599-612 CrossRef
    31. Moreb, JS, Baker, HV, Chang, LJ, Amaya, M, Lopez, MC, Ostmark, B, Chou, W (2008) ALDH isozymes downregulation affects cell growth, cell motility and gene expression in lung cancer cells. Mol Cancer 7: pp. 87 CrossRef
    32. Matsuo, K, Oze, I, Hosono, S, Ito, H, Watanabe, M, Ishioka, K, Ito, S, Tajika, M, Yatabe, Y, Niwa, Y, Yamao, K, Nakamura, S, Tajima, K, Tanaka, H (2013) The aldehyde dehydrogenase 2 (ALDH2) Glu504Lys polymorphism interacts with alcohol drinking in the risk of stomach cancer. Carcinogenesis 34: pp. 1510-1515 CrossRef
    33. Lu, S, Lee, J, Revelo, M, Wang, X, Dong, Z (2007) Smad3 is overexpressed in advanced human prostate cancer and necessary for progressive growth of prostate cancer cells in nude mice. Clin Cancer Res 13: pp. 5692-5702 CrossRef
    34. Sieuwerts, AM, Look, MP, Meijer-van Gelder, ME, Timmermans, M, Trapman, AMAC, Garcia, RR, Arnold, M, Goedheer, AJW, de Weerd, V, Portengen, H (2006) Which cyclin E prevails as prognostic marker for breast cancer? Results from a retrospective study involving 635 lymph node鈥搉egative breast cancer patients. Clin Cancer Res 12: pp. 3319-3328 CrossRef
    35. Mishina, T, Dosaka-Akita, H, Hommura, F, Nishi, M, Kojima, T, Ogura, S, Shimizu, M, Katoh, H, Kawakami, Y (2000) Cyclin E expression, a potential prognostic marker for non-small cell lung cancers. Clin Cancer Res 6: pp. 11-16
    36. Loden, M, Stighall, M, Nielsen, NH, Roos, G, Emdin, SO, Ostlund, H, Landberg, G (2002) The cyclin D1 high and cyclin E high subgroups of breast cancer: separate pathways in tumorogenesis based on pattern of genetic aberrations and inactivation of the pRb node. Oncogene 21: pp. 4680-4690 CrossRef
    37. Kawakami, K, Enokida, H, Tachiwada, T, Nishiyama, K, Seki, N, Nakagawa, M (2007) Increased SKP2 and CKS1 gene expression contributes to the progression of human urothelial carcinoma. J Urol 178: pp. 301-307 CrossRef
    38. Zigeuner, R, Tsybrovskyy, O, Ratschek, M, Rehak, P, Lipsky, K, Langner, C (2004) Prognostic impact of p63 and p53 expression in upper urinary tract transitional cell carcinoma. Urology 63: pp. 1079-1083 CrossRef
    39. The pre-publication history for this paper can be accessed here:http://www.biomedcentral.com/1471-2407/14/836/prepub
  • 刊物主题:Cancer Research; Oncology; Stem Cells; Animal Models; Internal Medicine;
  • 出版者:BioMed Central
  • ISSN:1471-2407
文摘
Background Current knowledge about the molecular properties and prognostic markers of upper tract urothelial carcinoma (UTUC) is sparse and often based on bladder urothelial carcinoma (UC), which is thought to share common risk factors with UTUC. However, studies have suggested that differences exist regarding tumor behavior and molecular biology of these cancers, comprehensive investigations are needed to guide the clinical management of UTUC. In recent years, massively parallel sequencing has allowed insights into the biology of many cancers, and molecular prognostic markers based on this approach are rapidly emerging. The goal of this study was to characterize the gene expression patterns of UTUC using massively parallel sequencing, and identify potential molecular markers for prognosis in patients with UTUC. Methods We compared the genome-wide mRNA expression profile of cancer and matched normal tissues from 10 patients with UTUC to identify significantly deregulated genes. We also examined the protein levels of prognostic marker candidates in 103 patients with UTUC, and tested the association of these markers with overall survival using Kaplan-Meier model and Cox regression. Results Functional enrichment of significantly deregulated genes revealed that expression patterns of UTUC were characterized by disorders of cell proliferation and metabolism. And we also compared the expression profile of UTUC with that of bladder UC. Our results highlighted both shared (e.g. disorders of cell cycling and growth signal transduction) and tumor-specific (e.g. abnormal metabolism in UTUC and disruptions of adhesion pathways in bladder UC) features of these two cancers. Importantly, we identified that low protein expression of ALDH2 while high CCNE1 and SMAD3 were significantly associated with increased depth (*P Conclusions In conclusion, our study characterized the comprehensive expression profile of UTUC and highlighted both commons and differences in expression patterns between UTUC and bladder UC. And we, for the first time, revealed that ALDH2, CCNE1 and SMAD3 are associated with prognosis in patients with UTUC.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700