Characteristics of Wave Propagation in The Saturated Thermoelastic Porous Medium
详细信息    查看全文
  • 作者:Tao Haibing (1)
    Liu Ganbin (2)
    Xie Kanghe (1)
    Zheng Rongyue (2)
    Deng Yuebao (2)
  • 关键词:Fluid–saturated soil ; Thermo ; elastic wave ; Coupling effect ; Wave velocity ; Character attenuation
  • 刊名:Transport in Porous Media
  • 出版年:2014
  • 出版时间:May 2014
  • 年:2014
  • 卷:103
  • 期:1
  • 页码:47-68
  • 全文大小:779 KB
  • 参考文献:1. Aoudi, M.: A problem for an infinite elastic body with a spherical cavity in the theory of generalized thermoelastic diffusion. Int. J. Solids Struct. 44(17), 5711-722 (2007) CrossRef
    2. Belotserkovets, A., Prevost, J.H.: Thermoporoelastic response of a fluid–fluid-saturated porous sphere: an analytical solution. Int. J. Eng. Sci. 49(2), 1415-423 (2011) CrossRef
    3. Biot, M.A.: Theory of propagation of elastic waves in a fluid fluid–saturated porous solid. I. Low frequency range. II. Higher frequency range. J. Acoust. Soc. Am. 28(2), 168-91 (1956) CrossRef
    4. Biot, M.A.: Thermoelasticity and irreversible thermo-dynamics. J. Appl. Phys. 27(3), 240-53 (1956) CrossRef
    5. Coussy, O.: Poromechanics. Wiley, Chichester (2004)
    6. Eringen, A.C.: Mechanics of Continua. Robert E. Krieger Publishing Co., New York (1980)
    7. Gajo, A., Fedel, A., Mongiovi, L.: Experimental analysis of the effects of fluid–solid couplings on the velocity of elastic waves in fluid–saturated porous medium. Geotechnique 47(5), 993-008 (1997) CrossRef
    8. Green, A.E., Lindsay, K.A.: Thermoelasticity. J. Elast. 2(1), 1- (1972) CrossRef
    9. Khashan, S.A., Al-nimr, M.A.: Validation of the local thermal equilibrium assumption in forced convection of non-newtonian fluids through porous channels. Transp. Porous Med. 61(3), 291-05 (2005) CrossRef
    10. Liu, G.B., Xie, K.H., Zheng, R.Y.: Model of nonlinear coupled thermo–hydro-elastodynamics response for a fluid–saturated poroelastic medium. Sci. China (Ser. E) 52(8), 2373-383 (2009) CrossRef
    11. Liu, G.B., Xie, K.H., Ye, R.H.: Mode of a spherical cavity’s thermo-elastodynamic response in a fluid–saturated porous medium for non-torsional loads. Comput. Geotech. 37(3), 381-90 (2010) CrossRef
    12. Liu, G.B., Liu, X.H., Ye, R.H.: The relaxation effects of a fluid–saturated porous medium using the generalized thermoviscoelasticity theory. Int. J. Eng. Sci. 48(9), 795-08 (2010) CrossRef
    13. Lord, H.W., Shulman, Y.: A generalised dynamical theory of thermoelasticity. J. Mech. Phys. Solids 15(5), 299-09 (1967) CrossRef
    14. Lykotrafitis, G., Georgiadis, H.G., Brock, L.M.: Three-dimensional thermoelastic wave motions in a half-space under the action of a buried source. Int. J. Solids Struct. 38(28-9), 4857-878 (2001) CrossRef
    15. Pecker, C., Deresiewicz, H.: Thermal effects on waves in liquid filled porous medium. Acta Mech. 16(1-), 45-4 (1973) CrossRef
    16. Plona, T.J.: Observation of a second bulk compressional wave in a porous medium at ultrasonic frequencies. Appl. Phys. Lett. 36(4), 259-61 (1980) CrossRef
    17. Sharma, M.D.: Wave propagation in a general anisotropic poroelastic medium: Biot’s theories and homogenization theory. J. Earth Syst. Sci. 116(4), 357-67 (2007) CrossRef
    18. Sherief, H.H., Saleh, H.A.: A problem for an infinite thermoelastic body with a spherical cavity. Int. J. Eng. Sci. 36(4), 473-87 (1998) CrossRef
    19. Singh, B.: Reflection of SV waves from the free surface of an elastic solid in generalized thermoelastic diffusion. J. Sound Vib. 291(3-), 764-78 (2006) CrossRef
    20. Singh, B.: Wave propagation in a generalized thermoelastic material with voids. Appl. Math. Comput. 189(1), 698-09 (2007) CrossRef
    21. Singh, B.: Reflection of plane waves at the free surface of a monoclinic thermoelastic solid half-space. Eur. J. Mech. A Solid 29(5), 911-16 (2010) CrossRef
    22. Singh, B.: On propagation of plane waves in generalized porothermoelasticity. B. Seismol. Soc. Am. 101(2), 756-62 (2011) CrossRef
    23. Wenzlau, F., Müller, T.: Finite-difference modeling of wave propagation and diffusion in poroelastic media. Geophysics 74(4), T55–T66 (2009) CrossRef
    24. Yang, J., Wu, S.M., Chai, Y.Q.: Characteristics of propagation of elastic waves in fluid–saturated soils. Chin. J. Vib. Eng. 9(2), 128-37 (1996)
    25. Youssef, H.M.: Theory of generalized porothermoelasticity. Int. J. Rock Mech. Min. Sci. 44(2), 222-27 (2007) CrossRef
    26. Zhou, Y., Rajapakse, R.K.N.D., Graham, J.: A coupled thermoporoelastic model with thermo-osmosis and thermal-filtration. Int. J. Solid Struct. 35(34-5), 4659-683 (1998) CrossRef
  • 作者单位:Tao Haibing (1)
    Liu Ganbin (2)
    Xie Kanghe (1)
    Zheng Rongyue (2)
    Deng Yuebao (2)

    1. Research Center of Coastal and Urban Geotechnical Engineering, Zhejiang University, Hangzhou?, 310027, People’s Republic of China
    2. Faculty of Architectural Civil Engineering and Environment, Ningbo University, Ningbo?, 315211, People’s Republic of China
  • ISSN:1573-1634
文摘
Took into consideration the coupling effect of thermo, hydraulics and mechanics, a set of thermo–hydro-mechanical coupled wave equations for fluid–saturated soil are developed. In these wave equations, the $P_{3}$ -wave in solid phase and $P_{4}$ -wave in fluid phase are coupled into $T$ -wave in fluid–saturated soil by the assumption that the temperature of the solid phase is equal to the temperature of liquid phase at the same position. The dispersion equations for the thermo-elastic wave, which can be degraded to the equations for elastic wave in fluid–saturated soil, are derived from the above equations by introducing four potential functions. Then, these equations are solved numerically. The characteristics of wave phase velocity, attenuation and the effect of thermal expansion, initial temperature and porosity, etc., on phase velocities of $P_{1}$ -, $P_{2}$ -, and $T$ -wave are discussed. As a reference, the characteristics of the propagation of elastic waves in fluid–saturated soil are also studied. The computation results show that (1) the phase velocity of $P_{1}$ -wave obtained by the theory of thermoporoelascity (THM) is faster than that by the theory of poroelasticity (HM); (2) the attenuation of $P_{1}$ -wave obtained by either the theory of THM or HM are consistent; (3) the dissemination characteristics of $P_{2}$ -wave are almost consistent; (4) the phase velocity of $T$ -wave is the slowest among the three compressional waves; and (5) The attenuation versus frequency characteristic of $T$ -wave is similar to that of $P_{2}$ -wave.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700