Biosynthesis of 1,3-propanediol from recombinant E. coli by optimization process using pure and crude glycerol as a sole carbon source under two-phase fermentation system
详细信息    查看全文
  • 作者:Rosarin Rujananon (1)
    Poonsuk Prasertsan (1) (2)
    Amornrat Phongdara (3)
  • 关键词:Glycerol ; 1 ; 3 ; Propanediol ; Recombinant E. coli ; Optimization ; Response surface methodology
  • 刊名:World Journal of Microbiology and Biotechnology
  • 出版年:2014
  • 出版时间:April 2014
  • 年:2014
  • 卷:30
  • 期:4
  • 页码:1359-1368
  • 全文大小:1,134 KB
  • 参考文献:1. Abbad-Andaloussi S, Amine J, Gerard P, Petitdemange H (1998) Effect of glucose on glycerol metabolism by / Clostridium butyricum DSM 5431. J Appl Microbiol 84:515-22 CrossRef
    2. Aghaie E, Pazouki M, Hosseimi MR, Ranjbar M, Ghavipanjeh F (2009) Response surface methodology (RSM) analysis of organic acid production for kaolin beneficiation by / Aspergillus niger. Chem Eng J 147:245-51 CrossRef
    3. Barbirato F, Camarasa C, Claret Grivet JP, Bories A (1995) Glycerol fermentation by a new 1,3-propanediol producing microorganism: / Enterobacter agglomerans. Appl Microbiol Biotechnol 43:786-93 CrossRef
    4. Barbirato F, Grivet JP, Soucaille P, Bories A (1996) 3-Hydroxypropionaldehyde, an inhibitory metabolite of glycerol fermentation to 1,3-propanediol by enterobacterial species. Appl Environ Microbiol 62:1448-451
    5. Biebl H, Martin S (1995) Fermentation of glycerol to 1,3-propanediol: use of cosubstrates. Appl Microbiol Biotechnol 44:15-9 CrossRef
    6. Cheek J, Broderick JB (2001) Adenosylmethionine-dependent iron-sulfur enzymes: versatile clusters in a radical new role. J Biol Inorg Chem 6:209-26 CrossRef
    7. Circle SJ, Stone L, Boruff CS (1945) Acrolein determination by means of tryptophan a colorimetric micrometric. Ind Eng Chem Res 17:259-62
    8. Frey PA, Magnusson OT (2003) S-Adenosylmethionine: a wolf in sheep’s clothing, or a rich man’s adenosylcobalamin. Chem Rev 103:2129-148 CrossRef
    9. Garg SK, Jain A (1995) Fermentative production of 2,3-butanediol: a review. Bioresour Technol 51:103-09 CrossRef
    10. Ghadge SV, Raheman H (2006) Process optimization for biodiesel production from mahua ( / Madhuca indica) oil using response surface methodology. Bioresour Technol 97:379-84 CrossRef
    11. Laffend LA, Nagarajan V (1997) Bioconversion of a fermentable carbon source to 1,3-propanediol by a single microorganism. US Patents 5,686,276
    12. Lin R, Liu H, Hao J, Cheng K, Liu D (2005) Enhancement of 1,3-propanediol production by / Klebsiella pneumoniae with fumarate addition. Biotechnol Lett 27:1755-759 CrossRef
    13. Liu HL, Chiou YR (2005) Optimal decolorization efficiency of Reactive Red 239 by UV/TiO2 photocatalytic process coupled with response surface methodology. Chem Eng J 112:173-79 CrossRef
    14. Malaoui H, Marczak R (2001) Influence of glucose on glycerol metabolism by wild-type and mutant strains of / Clostridium butyricum E5 grown in chemostat culture. Appl Microbiol Biotechnol 55:226-33 CrossRef
    15. Meinander N, Zacchi G, Hahn-H?gerdal B (1996) A heterologous reductase affects the redox balance of recombinant / Saccharomyces cerevisiae. Microbiology 142:165-72 CrossRef
    16. Mongi F, Edward C, William H, Gwang-Hoon G, Almadidy A (2005) Influence of culture parameters on biological hydrogen production by / Clostridium saccharoperbutylacetonicum ATCC 27021. World J Microbiol Biotechnol 21:855-62 CrossRef
    17. Oh BR, Seo JW, Choi MH, Kim CH (2008) Optimization of culture conditions for 1,3-propanediol production from crude glycerol by / Klebsiella pneumoniae using response surface methodology. Biotechnol Bioproc E 13:666-70 CrossRef
    18. Pirt SJ (1975) Principles of microbe and cell cultivation. Wiley, New York
    19. Qi X, Sun L, Luo Z, Wu J, Meng X, Tang Y, Wei Y, Huang R (2006) Rational design of glycerol dehydratase: swapping the genes encoding the subunits of glycerol dehydratase to improve enzymatic properties. Chin Sci Bull 51:2977-985 CrossRef
    20. Rasch M (2002) The influence of temperature, salt and pH on the inhibitory effect of reuterin on / Escherichia coli. Int J Food Microbiol 72:225-31 CrossRef
    21. Raynaud C, Sarcabal P, Meynial-Salles I, Croux C, Soucaille P (2003) Molecular characterization of the 1,3-propanediol operon of / Clostridium butyricum encoding a novel coenzyme B12 independent glycerol dehydrataseand a 1,3-propanediol dehydrogenase. Proc Natl Acad Sci USA 100:5010-015 CrossRef
    22. Riesenberg D, Schulz V, Knorre WA, Pohl HD, Korz D, Sanders EA et al (1991) High cell density cultivation of / Escherichia coli at controlled specific growth rate. J Biotechnol 20:17-8 CrossRef
    23. Rujananon R, Prasertsan P, Phongdara A, Panrat T, Sun J, Rappert S, Zeng AP (2011) Construction of recombinant / E. coli expressing fusion protein to produce 1,3-propanediol. Int J Biol Med Sci 1(1):26-2
    24. Sattayasamitsathit S, Prasertsan P, Methacanon P (2011) Statistical optimization for simultaneous production of 1,3-propanediol and 2,3-butanediol using crude glycerol by newly bacterial isolate. Process Biochem 46:608-14 CrossRef
    25. Saxena R, Anand P, Saran S, Isar J (2009) Microbial production of 1,3-propanediol: recent developments and emerging opportunities. Biotechnol Adv 27:895-13 CrossRef
    26. Skraly FA, Lytle BL, Cameron DC (1998) Construction and characterization of a 1,3-propanediol operon. Appl Environ Microbiol 64:98-05
    27. Sun J, Heuvel J, Soucaille P, Qu Y, Zeng AP (2003) Comparative genomic analysis of dha regulon and related genes for anaerobic glycerol metabolism in bacteria. Biotechnol Prog 19:263-72 CrossRef
    28. Tang X, Tan Y, Zhu H, Zhao K, Shen W (2009) Microbial conversion of glycerol to 1,3-propanediol by an engineered strain of / Escherichia coli. Appl Environ Microbiol 75:1628-634 CrossRef
    29. Tong IT, Liao HH, Cameron DC (1991) 1,3-Propanediol production by / Escherichia coli expressing genes from the / Klebsiella pneumoniae dha regulon. Appl Environ Microbiol 57:3541-546
    30. Wang F, Qu H, Zhang D, Tian P, Tan T (2007) Production of 1,3-propanediol from glycerol by recombinant / E. coli using incompatible plasmids system. Mol Biotechnol 37:112-19 CrossRef
    31. Zeng AP, Biebl H, Schlieker H, Deckwer WD (1993) Pathway analysis of glycerol fermentation by / Klebsiella / pneumoniae: regulation of reducing equivalent balance and product formation. Enz Microb Technol 15:770-79 CrossRef
    32. Zhang GL, Ma BB, Xu XL, Li C, Wang L (2007) Fast conversion of glycerol to 1,3-propanediol by a new strain of / Klebsiella pneumoniae. Biochem Eng J 37:256-60 CrossRef
    33. Zheng ZM, Hu QL, Hao J, Xu F, Guo NN, Sun Y et al (2008) Statistical optimization of culture conditions for 1,3-propanediol by / Klebsiella pneumoniae AC15 via central composite design. Bioresour Technol 99:1052-056 CrossRef
    34. Zhu MM, Lawman PD, Cameron DC (2002) Improving 1,3-propanediol production from glycerol in a metabolically engineered / Escherichia coli by reducing accumulation of sn-Glycerol-3-phosphate. Biotechnol Prog 18:694-99 CrossRef
    35. Zhuge B, Zhang C, Fang H, Zhuge J, Permaul K (2010) Expression of 1,3-propanediol oxidoreductase and its isoenzyme in / Klebsiella pneumoniae for bioconversion of glycerol into 1,3-propanediol. Appl Microbiol Biot 87:2177-184 CrossRef
    36. Zinatizadeh AAL, Mohamed AR, Najafpour GD, Isa MH, Nasrollahzadeh H (2006) Kinetic evaluation of high rate POME digestion in an UASFF bioreactor. Process Biochem 41:1038-046 CrossRef
  • 作者单位:Rosarin Rujananon (1)
    Poonsuk Prasertsan (1) (2)
    Amornrat Phongdara (3)

    1. Department of Industrial Biotechnology, Faculty of Agro-Industry, Prince of Songkla University, Songkhla, 90112, Thailand
    2. Palm Oil Products and Technology Research Center (POPTEC), Faculty of Agro-Industry, Prince of Songkla University, Songkhla, 90112, Thailand
    3. Center for Genomics and Bioinformatics Research, Faculty of Science, Prince of Songkla University, Songkhla, 90112, Thailand
  • ISSN:1573-0972
文摘
The environmental and nutritional condition for 1,3-propanediol (1,3-PD) production by the novel recombinant E. coli BP41Y3 expressing fusion protein were first optimized using conventional approach. The optimum environmental conditions were: initial pH at 8.0, incubation at 37?°C without shaking and agitation. Among ten nutrient variables, fumarate, (NH4)2HPO4 and peptone were selected to study on their interaction effect using the response surface methodology. The optimum medium contained modified Riesenberg medium (containing pure glycerol as a sole carbon source) supplemented with 63.65?mM fumarate, 3.80?g/L (NH4)2HPO4 and 1.12?g/L peptone, giving the maximum 1,3-PD production of 2.43?g/L. This was 3.5-fold higher than the original medium (0.7?g/L). Two-phase cultivation system was conducted and the effect of pH control (at 6.5, 7.0 and 8.0) was investigated under anaerobic condition by comparing with the no pH control condition. The cultivation system without pH control (initial pH of 8.0) gave the maximum values of 1.65?g/L 1,3-PD, the 1,3-PD production rate of 0.13?g/L?h and the yield of 0.31?mol 1,3-PD/mol crude glycerol. Hence, using crude glycerol as a sole carbon source resulted in 32?% lower 1,3-PD production from this recombinant strain that may be due to the presence of various impurities in the crude glycerol of biodiesel plant. In addition, succinic acid was found to be a major product during fermentation by giving the maximum concentration of 11.92?g/L after 24?h anaerobic cultivation.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700