Triggering Frictional Slip by Mechanical Vibrations
详细信息    查看全文
  • 作者:Rosario Capozza (1) rosario.capozza@gmail.com
    Andrea Vanossi (2) vanossi@sissa.it
    Alessandro Vezzani (34) vezzani@fis.unipr.it
    Stefano Zapperi (56) stefano.zapperi@cnr.it
  • 关键词:Mechanical control of friction – ; Friction mechanisms – ; Stick– ; slip – ; Numerical simulations
  • 刊名:Tribology Letters
  • 出版年:2012
  • 出版时间:October 2012
  • 年:2012
  • 卷:48
  • 期:1
  • 页码:95-102
  • 全文大小:938.4 KB
  • 参考文献:1. Persson, B.N.J.: Sliding Friction: Physical Principles and Applications. Springer, Berlin (1998)
    2. Persson, B.N.J.: Sliding friction. Surf. Sci. Rep. 33, 83 (1999)
    3. Barel, I., Urbakh, M., Jansen, L., Schirmeisen, A.: Multibond dynamics of nanoscale friction: the role of temperature. Phys. Rev. Lett. 104, 066104 (2010)
    4. Tshiprut, Z., Zelner, S., Urbakh, M.: Temperature-induced enhancement of nanoscale friction. Phys. Rev. Lett. 102, 136102 (2009)
    5. Filippov, A.E., Vanossi, A., Urbakh, M.: Origin of friction anisotropy on a quasicrystal surface. Phys. Rev. Lett. 104, 074302 (2010)
    6. Gao, J., Luedtke, W., Landman, U.: Friction control in thin-film lubrication. J. Phys. Chem. B 102, 5033 (1998)
    7. Rozman, M.G., Urbakh, M., Klafter, J.: Controlling chaotic frictional forces. Phys. Rev. E 57, 7340 (1998)
    8. Zaloj, V., Urbakh, M., Klafter, J.: Modifying friction by manipulating normal response to lateral motion. Phys. Rev. Lett. 82, 4823 (1999)
    9. Tshiprut, Z., Filippov, A.E., Urbakh, M.: Tuning diffusion and friction in microscopic contacts by mechanical excitations. Phys. Rev. Lett. 95, 016101 (2005)
    10. Guerra, R., Vanossi, A., Urbakh, M.: Controlling microscopic friction through mechanical oscillations. Phys. Rev. E 78, 036110 (2008)
    11. Heuberger, M., Drummond, C., Israelachvili, J.N.: Coupling of normal and transverse motions during frictional sliding. J. Phys. Chem. B 102, 5038 (1998)
    12. Socoliuc, A., Gnecco, E., Maier, S., Pfeiffer, O., Baratoff, A., Bennewitz, R., Meyer, E.: Atomic-scale control of friction by actuation of nanometer-sized contacts. Science 313, 207 (2006)
    13. Jeon, S., Thundat, T., Braiman, Y.: Effect of normal vibration on friction in the atomic force microscopy experiment. Appl. Phys. Lett. 88, 214102 (2006)
    14. Su, L., Xu, J., Kurita, M., Kato, K., Adachi, K.: Tapping effect on friction between slider and disk. Tribol. Lett. 15, 91 (2003)
    15. Johnson, P.A., Savage, H., Knuth, M., Gomberg, J., Marone, C.: Effects of acoustic waves on stick–slip in granular media and implications for earthquakes. Nature 451, 57 (2008)
    16. Capozza, R., Vanossi, A., Vezzani, A., Zapperi, S.: Suppression of friction by mechanical vibrations. Phys. Rev. Lett. 103, 085502 (2009)
    17. Urbakh, M., Klafter, J., Gourdon, D., Israelachvili, J.: The nonlinear nature of friction. Nature 430, 525 (2004)
    18. Braun, O.M., Naumovets, A.G.: Nanotribology: microscopic mechanisms of friction. Surf. Sci. Rep. 60, 79 (2006)
    19. Vanossi, A., Braun, O.M.: Driven dynamics of simplified tribological models. J. Phys. Condens. Matter 19, 305017 (2007)
    20. Benassi, A., Vanossi, A., Santoro, G.E., Tosatti, E.: Parameter-free dissipation in simulated sliding friction. Phys. Rev. B 82, 081401(R) (2010)
    21. Kowalik, Z.J., Franaszek, M., Pierański, P.: Self-reanimating chaos in the bouncing-ball system. Phys. Rev. A 37, 4016 (1988)
    22. Mehta, A., Luck, J.M.: Novel temporal behavior of a nonlinear dynamical system: the completely inelastic bouncing ball. Phys. Rev. Lett. 65, 393 (1990)
    23. Luck, J.M., Mehta, A.: Bouncing ball with a finite restitution: chattering, locking, and chaos. Phys. Rev. E 48, 3988 (1993)
    24. M谩ty谩s, L., Klages, R.: Irregular diffusion in the bouncing ball billiard. Phys. D 187, 165 (2004)
    25. de Wijn, A.S., Kantz, H.: Vertical chaos and horizontal diffusion in the bouncing-ball billiard. Phys. Rev. E 75, 046214 (2007)
    26. Dalton, F., Farrelly, F., Petri, A., Pietronero, L., Pitolli, L., Pontuale, G.: Shear stress fluctuations in the granular liquid and solid phases. Phys. Rev. Lett. 95, 138001 (2005)
  • 作者单位:1. School of Chemistry, Tel Aviv University, 69978 Tel Aviv, Israel2. Consiglio Nazionale delle Ricerche CNR-IOM Democritos and International School for Advanced Studies (SISSA), Via Bonomea 265, I-34136 Trieste, Italy3. Dipartimento di Fisica, Universit脿 degli Studi di Parma, Viale G.P. Usberti 7/A, 43100 Parma, Italy4. Consiglio Nazionale delle Ricerche CNR-NANO S3, Via Campi 213A, 41125 Modena, Italy5. Consiglio Nazionale delle Ricerche CNR-IENI, Via R. Cozzi 53, 20125 Milan, Italy6. ISI Foundation, Viale S. Severo 65, 10133 Turin, Italy
  • ISSN:1573-2711
文摘
We study the slippage of a tribological system of particles confined between a horizontally driven top plate and a vertically oscillating bottom plate. As shown in a recent article (Capozza et al., Phys Rev Lett 103:085502, 2009), tiny vibrations, when applied in a suitable range of frequencies, may suppress the high dissipative stick–slip dynamics reducing drastically the lateral friction force. Here, we generalize and prove the robustness of the results against the effect of quenched disorder in the confining substrates and the presence of adhesive and cohesive forces at the interface. The observed phenomenology is shown to hold true by moving from the previously considered two dimensional modeling to a more realistic three dimensional geometry. A detailed analysis is devoted to the case of short vibration pulses. These findings are relevant for nanoscale mechanics and in the context of earthquake or avalanches triggering.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700