LC–HRMS fingerprinting as an efficient approach to highlight fine differences in cheese metabolome during ripening
详细信息    查看全文
  • 作者:Clémentine Le Boucher ; Frédérique Courant ; Anne-Lise Royer ; Sophie Jeanson…
  • 关键词:LC–HRMS ; Metabolomics ; Untargeted analysis ; Lactococcus lactis ; Spatial distribution
  • 刊名:Metabolomics
  • 出版年:2015
  • 出版时间:October 2015
  • 年:2015
  • 卷:11
  • 期:5
  • 页码:1117-1130
  • 全文大小:1,375 KB
  • 参考文献:Aly, S., Floury, J., Famelart, M. H., Madec, M. N., Dupont, D., Le Gouar, Y., et al. (2011). Nisin quantification by ELISA qllows the modeling of its apparent diffusion coefficient in model cheeses. Journal of Agricultural and Food Chemistry, 59(17), 9484-490.CrossRef PubMed
    Antignac, J., Courant, F., Pinel, G., Bichon, E., Monteau, F., Elliott, C., et al. (2011). Mass spectrometry-based metabolomics applied to the chemical safety of food. Trends in Analytical Chemistry, 30(2), 292-01.CrossRef
    Buscher, J. M., Czernik, D., Ewald, J. C., Sauer, U., & Zamboni, N. (2009). Cross-platform comparison of methods for quantitative metabolomics of primary metabolism. Analytical Chemistry, 81(6), 2135-143.CrossRef PubMed
    Cevallos-Cevallos, J. M., Reyes-De-Corcuera, J. I., Etxeberria, E., Danyluk, M. D., & Rodrick, G. E. (2009). Metabolomic analysis in food science: A review. Trends in Food Science & Technology, 20(11-12), 557-66.CrossRef
    Cifuentes, A. (2009). Food analysis and foodomics foreword. Journal of Chromatography A, 1216(43), 7109.CrossRef PubMed
    Consonni, R., & Cagliani, L. (2008). Ripening and geographical characterization of Parmigiano Reggiano cheese by (1)H NMR spectroscopy. Talanta, 76(1), 200-05.CrossRef PubMed
    Courant, F., Royer, A. L., Chéreau, S., Morvan, M., Monteau, F., Antignac, J. P., et al. (2012). Implementation of a semi-automated strategy for the annotation of metabolomic fingerprints generated by liquid chromatography-high resolution mass spectrometry from biological samples. Analyst, 137(21), 4958-967.CrossRef PubMed
    Cretenet, M., Laroute, V., Ulve, V., Jeanson, S., Nouaille, S., Even, S., et al. (2011). Dynamic analysis of the Lactococcus lactis transcriptome in cheeses made from milk concentrated by ultrafiltration reveals multiple strategies of adaptation to stresses. Applied and Environmental Microbiology, 77(1), 247-57.PubMed Central CrossRef PubMed
    Dunn, W. B., & Ellis, D. I. (2005). Metabolomics: Current analytical platforms and methodologies. Trac-Trends in Analytical Chemistry, 24(4), 285-94.CrossRef
    Duportet, X., Aggio, R. B. M., Carneiro, S., & Villas-Boas, S. G. (2012). The biological interpretation of metabolomic data can be misled by the extraction method used. Metabolomics, 8(3), 410-21.CrossRef
    Garcia-Canas, V., Simo, C., Herrero, M., Ibanez, E., & Cifuentes, A. (2012). Present and future challenges in food analysis: Foodomics. Analytical Chemistry, 84(23), 10150-0159.CrossRef PubMed
    Gianferri, R., Maioli, M., Delfini, M., & Brosio, E. (2007). A low-resolution and high-resolution nuclear magnetic resonance integrated approach to investigate the physical structure and metabolic profile of Mozzarella di Bufala Campana cheese. International Dairy Journal, 17(2), 167-76.CrossRef
    Goodacre, R., Vaidyanathan, S., Dunn, W. B., Harrigan, G. G., & Kell, D. B. (2004). Metabolomics by numbers: Acquiring and understanding global metabolite data. Trends in Biotechnology, 22(5), 245-52.CrossRef PubMed
    Hannon, J. A., Lopez, C., Madec, M. N., & Lortal, S. (2006). Altering renneting pH changes microstructure, cell distribution, and lysis of Lactococcus lactis AM2 in cheese made from ultrafiltered milk. Journal of Dairy Science, 89(3), 812-23.CrossRef PubMed
    Hendriks, M. M. W. B., van Eeuwijk, F. A., Jellema, R. H., Westerhuis, J. A., Reijmers, T. H., Hoefsloot, H. C. J., et al. (2011). Data-processing strategies for metabolomics studies. Trac-Trends in Analytical Chemistry, 30(10), 1685-698.CrossRef
    Herrero, M., Simo, C., Garcia-Canas, V., Ibanez, E., & Cifuentes, A. (2012). Foodomics: MS-based strategies in modern food science and nutrition. Mass Spectrometry Reviews, 31(1), 49-9.CrossRef PubMed
    Hession, A. O., Esrey, E. G., Croes, R. A., & Maxwell, C. A. (2008). N-acetylglutamate and N-acetylaspartate in soybeans (Glycine max L.), maize (Zea maize L.), and other foodstuffs. Journal of Agricultural and Food Chemistry, 56(19), 9121-126.CrossRef PubMed
    Isolini, D., Grand, M., & Glattli, H. (1990). Selective media for the detection of obligate and facultative heterofermentative lactobacilli. Schweizerische Milchwirtschaftliche Forschung, 19(3), 57-9.
    Jeanson, S., Chadoeuf, J., Madec, M., Aly, S., Floury, J., Brocklehurst, T., et al. (2011). Spatial distribution of bacterial colonies in a model cheese. Applied and Environmental Microbiology, 77(4), 1493-500.
    Juillard, V., Lebars, D., Kunji, E. R. S., Konings, W. N., Gripon, J. C., & Richard, J. (1995). Oligopeptides are the main source of nitrogen for Lactococcus lactis during growth in milk. Applied and Environmental Microbiology, 61(8), 3024-030.PubMed Central PubMed
    Kell, D. B., & Oliver, S. G. (2004). Here is the evidence, now what is the hypothesis? The complementary roles of inductive and hypothesis-driven science in the post-genomic era. BioEssays, 26(1), 99-05.CrossRef PubMed
    Kessner, D., Chambers, M., Burke, R., Agusand, D., & Mallick,
  • 作者单位:Clémentine Le Boucher (1) (2) (3)
    Frédérique Courant (3)
    Anne-Lise Royer (1) (2) (3)
    Sophie Jeanson (1) (2)
    Sylvie Lortal (1) (2)
    Gaud Dervilly-Pinel (3)
    Anne Thierry (1) (2)
    Bruno Le Bizec (3)

    1. INRA, UMR1253 Science et Technologie du Lait et de l’?uf, 35042, Rennes, France
    2. Agrocampus Ouest, UMR1253 Science et Technologie du Lait et de l’?uf, 35042, Rennes, France
    3. LUNAM Université, Oniris, Laboratoire d’étude des Résidus et Contaminants dans les Aliments (LABERCA), USC INRA 1329, Route de Gachet, CS 50707, 44307, Nantes Cedex 3, France
  • 刊物主题:Biochemistry, general; Molecular Medicine; Cell Biology; Developmental Biology; Biomedicine general;
  • 出版者:Springer US
  • ISSN:1573-3890
文摘
New approaches, mainly based on mass spectrometry techniques, are being developed and appear as a must in the modern food science and microbiology research to investigate food quality and safety. To date, the investigation of cheese ripening mechanisms has mostly used targeted approaches. The aims of the present project were to assess the use of untargeted metabolomics as an approach to investigate the influence of altering one ripening parameter to generate fine differences in the microbial metabolism within cheese. Two cheeses were made which varied with respect to the spatial distribution of bacterial colonies, leading to cheeses with only big or only small colonies. Liquid chromatography high resolution mass spectrometry metabolic fingerprints were acquired on cheese extracts collected after 2, 13 and 27 days of ripening using two different extraction methods (water or acetonitrile) and analyzed using two different simultaneous ionization modes (positive and negative electrospray). Data processing involving XCMS and multivariate statistical analysis highlighted significant discriminant profiles of the cheese metabolomes according to the two different spatial distributions compared. The different fractions investigated (water and acetonitrile extractions in two ionization modes) were complementary and resulted in a view as global as possible of the cheese metabolome which had been modulated by the spatial distribution of bacterial colonies. Some of the metabolites were then identified using an in-house database. These results show the relevance of cheese LC–HRMS fingerprinting to understand the influence of a ripening parameter generating fine differences on microbial metabolism within cheese. Keywords LC–HRMS Metabolomics Untargeted analysis Lactococcus lactis Spatial distribution

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700