The evolutionary conservation of rps3 introns and rps19-rps3-rpl16 gene cluster in Adiantum capillus-veneris mitochondria
详细信息    查看全文
  • 作者:Savino Bonavita ; Teresa Maria Rosaria Regina
  • 关键词:Adiantum capillus ; veneris L. ; Mitochondrial ribosomal protein genes ; Post ; transcriptional gene regulation ; Seedless vascular plants
  • 刊名:Current Genetics
  • 出版年:2016
  • 出版时间:February 2016
  • 年:2016
  • 卷:62
  • 期:1
  • 页码:173-184
  • 全文大小:998 KB
  • 参考文献:Adams KL, Palmer JD (2003) Evolution of mitochondrial gene content: gene loss and transfer to the nucleus. Mol Phylogenet Evol 29:380–395CrossRef PubMed
    Alverson AJ, Wei X, Rice DW, Stern DB, Barry K, Palmer JD (2010) Insights into the evolution of mitochondrial genome size from complete sequences of Citrullus lanatus and Cucurbita pepo (Cucurbitaceae). Mol Biol Evol 27:1436–1448PubMedCentral CrossRef PubMed
    Alverson AJ, Rice DW, Dickinson S, Barry K, Palmer JD (2011) Origins and recombination of the bacterial-sized multichromosomal mitochondrial genome of cucumber. Plant Cell 23:2499–2513PubMedCentral CrossRef PubMed
    Bégu D, Araya A (2009) The horsetail Equisetum arvense mitochondria share two group I introns with the liverwort Marchantia, acquired a novel group II intron but lost intron-encoded ORFs. Curr Genet 55:69–79CrossRef PubMed
    Bégu D, Castandet B, Araya A (2011) RNA editing restores critical domains of a group I intron in fern mitochondria. Curr Genet 57:317–325CrossRef PubMed
    Bernt M, Braband A, Schierwater B, Stadler PF (2013) Genetic aspects of mitochondrial genome evolution. Mol Phylogenet Evol 69:328–338CrossRef PubMed
    Binder S, Hölzle A, Jonietz C (2010) RNA processing and RNA stability in plant mitochondria. In: Kempken F (ed) plant mitochondria. Springer Science and Business Media, New York, pp 107–130
    Bonen L (2008) Cis- and trans-splicing of group II introns in plant mitochondria. Mitochondrion 8:26–34CrossRef PubMed
    Bonen L (2012) Evolution of mitochondrial introns in plants and photosynthetic microbes. Adv Bot Res 63:155–186. doi:10.​1016/​B978-0-12-394279-1.​00007-7 CrossRef
    Christenhusz MJM, Chase MW (2014) Trends and concepts of fern classification. Ann Bot 113:571–594. doi:10.​1093/​aob/​mct299 PubMedCentral CrossRef PubMed
    Darracq A, Varré JS, Maréchal-Drouard L, Courseaux A, Castric V, Saumitou-Laprade P, Oztas S, Lenoble P, Vacherie B, Barbe V, Touzet P (2011) Structural and content diversity of mitochondrial genome in beet: a comparative genomic analysis. Genome Biol Evol 3:723–736PubMedCentral CrossRef PubMed
    Fedorova O, Zingler N (2007) Group II introns: structure, folding and splicing mechanism. Biol Chem 388:665–678CrossRef PubMed
    Grewe F, Viehoever P, Weisshaar B, Knoop V (2009) A trans-splicing group I intron and tRNA-hyperediting in the mitochondrial genome of the lycophyte Isoetes engelmannii. Nucleic Acids Res 37:5093–5104PubMedCentral CrossRef PubMed
    Grewe F, Herres S, Viehöver P, Polsakiewicz M, Weisshaar B, Knoop V (2011) A unique transcriptome: 1782 positions of RNA editing alter 1406 codon identities in mitochondrial mRNAs of the lycophyte Isoetes engelmannii. Nucleic Acids Res 39:2890–2902PubMedCentral CrossRef PubMed
    Hecht J, Grewe F, Knoop V (2011) Extreme RNA editing in coding islands and abundant microsatellites in repeat sequences of Selaginella moellendorffii mitochondria: the root of frequent plant mtDNA recombination in early tracheophytes. Genome Biol Evol 3:344–358CrossRef PubMed
    Hegedusova E, Brejova B, Tomaska L, Sipiczki M, Nosek J (2014) Mitochondrial genome of the basidiomycetous yeast Jaminaea angkorensis. Curr Genet 60:49–59CrossRef PubMed
    Himmelstrand K, Olson A, Brandström Durling M, Karlsson M, Stenlid J (2014) Intronic and plasmid–derived regions contribute to the large mitochondrial genome sizes of Agaricomycetes. Curr Genet 60:303–313PubMedCentral CrossRef PubMed
    Hunt MD, Newton KJ (1991) The NCS3 mutation: genetic evidence for the expression of ribosomal protein genes in Zea mays mitochondria. EMBO J 10:1045–1052PubMedCentral PubMed
    Knoop V (2004) The mitochondrial DNA of land plants: peculiarities in phylogenetic perspective. Curr Genet 46:123–139CrossRef PubMed
    Knoop V (2011) When you can’t trust the DNA: RNA editing changes transcript sequences. Cell Mol Life Sci 68:567–586CrossRef PubMed
    Kubo N, Ozawa K, Hino T, Kadowaki K (1996) A ribosomal protein L2 gene is transcribed, spliced, and edited at one site in rice mitochondria. Plant Mol Biol 31:853–862CrossRef PubMed
    Laroche J, Bousquet J (1999) Evolution of the mitochondrial rps3 intron in perennial and annual angiosperms and homology to nad5 intron 1. Mol Biol Evol 16:441–452CrossRef PubMed
    Liu Y, Xue J-Y, Wang B, Li L, Qiu Y-L (2011) The mitochondrial genomes of the early land plants Treubia lacunose and Anomodon rugelii: dynamic and conservative evolution. PLoS One 6:e25836PubMedCentral CrossRef PubMed
    Liu Y, Wang B, Cui P, Li L, Xue JY, Yu J, Qiu YL (2012) The mitochondrial genome of the lycophyte Huperzia squarrosa: the most archaic form in vascular plants. PLoS One 7:e35168PubMedCentral CrossRef PubMed
    Martínez-Abarca F, Toro N (2000) Group II introns in the bacterial world. Mol Microbiol 38:917–926CrossRef PubMed
    Michel F, Umesono K, Ozeki H (1989) Comparative and functional anatomy of group II catalytic introns. Gene 82:5–30CrossRef PubMed
    Nakazono M, Itadani H, Wakasugi T, Tsutsumi N, Sugiura M, Hirai A (1995) The rps3-rpl16-nad3-rps12 gene cluster in rice mitochondrial DNA is transcribed from alternative promoters. Curr Genet 27:184–189CrossRef PubMed
    Oda K, Yamoto K, Ohta E, Nakamura Y, Takemura M, Nozato N, Akashi K, Kanegae T, Ogura Y, Kohchi T, Ohyama K (1992) Gene organization deduced from the complete sequence of liverwort Marchantia polymorpha mitochondrial DNA. J Mol Biol 223:1–7CrossRef PubMed
    Perrotta G, Grienenberger JM, Gualberto JM (2002) Plant mitochondrial rps2 genes code for proteins with a C-terminal extension that is processed. Plant Mol Biol 50:523–533CrossRef PubMed
    Pryer KM, Schuettpelz E, Wolf PG, Schneider H, Smith AR, Cranfill R (2004) Phylogeny and evolution of ferns (Monilophytes) with a focus on the early leptosporangiate divergences. Am J Bot 91:1582–1598CrossRef PubMed
    Ran JH, Gao H, Wang XQ (2010) Fast evolution of the retroprocessed mitochondrial rps3 gene in Conifer II and further evidence for the phylogeny of gymnosperms. Mol Phylogenet Evol 54:136–149CrossRef PubMed
    Regina TMR, Quagliariello C (2010) Lineage-specific group II intron gains and losses of the mitochondrial rps3 gene in gymnosperms. Plant Physiol Biochem 48:646–654CrossRef PubMed
    Regina TMR, Picardi E, Lopez L, Pesole G, Quagliariello C (2005) A novel additional group II intron distinguishes the mitochondrial rps3 gene in gymnosperms. J Mol Evol 60:196–206CrossRef PubMed
    Rice DW, Alverson AJ, Richardson AO, Young GJ, Sanchez-Puerta MV, Munzinger J, Barry K, Boore JL, Zhang Y, dePamphilis CW, Knox EB, Palmer JD (2013) Horizontal transfer of entire genomes via mitochondrial fusion in the angiosperm Amborella. Science 342:1468–1473CrossRef PubMed
    Richardson AO, Palmer JD (2007) Horizontal gene transfer in plants. J Exp Bot 58:1–9CrossRef PubMed
    Richardson AO, Rice DW, Young GJ, Alverson AJ, Palmer JD (2013) The “fossilized” mitochondrial genome of Liriodendron tulipifera: ancestral gene content and order, ancestral editing sites, and extraordinarily low mutation rate. BMC Biol 11:29PubMedCentral CrossRef PubMed
    Robart AR, Zimmerly S (2005) Group II intron retroelements: function and diversity. Cytogenet Genome Res 110:589–597CrossRef PubMed
    Ruhfel BR, Gitzendanner MA, Soltis PS, Soltis DE, Burleigh JG (2014) From algae to angiosperms–inferring the phylogeny of green plants (Viridiplantae) from 360 plastid genomes. BMC Evol Biol 14:23PubMedCentral CrossRef PubMed
    Schuettpelz E, Pryer KM (2009) Evidence for a Cenozoic radiation of ferns in an angiosperm-dominated canopy. Proc Natl Acad Sci USA 106:11200–11205PubMedCentral CrossRef PubMed
    Schuster W, Brennicke A (1991) RNA editing makes mistakes in plant mitochondria: editing loses sense in transcripts of a rps19 pseudogene and in creating stop codons in coxI and rps3 mRNAs of Oenothera. Nucleic Acids Res 19:6923–6928PubMedCentral CrossRef PubMed
    Sloan DB, Alverson AJ, Štorchová H, Palmer JD, Taylor DR (2010) Extensive loss of translational genes in the structurally dynamic mitochondrial genome of the angiosperm Silene latifolia. BMC Evol Biol 10:274PubMedCentral CrossRef PubMed
    Sloan DB, Alverson AJ, Chuckalovcak JP, Wu M, McCauley DE, Palmer JD, Taylor DR (2012a) Rapid evolution of enormous, multichromosomal genomes in flowering plant mitochondria with exceptionally high mutation rates. PLoS Biol 10:e1001241PubMedCentral CrossRef PubMed
    Sloan DB, Müller K, McCauley DE, Taylor DR, Storchová H (2012b) Intraspecific variation in mitochondrial genome sequence, structure, and gene content in Silene vulgaris, an angiosperm with pervasive cytoplasmic male sterility. New Phytol 196:1228–1239. doi:10.​1111/​j.​1469-8137.​2012.​04340.​x CrossRef PubMed
    Smith AR, Pryer KM, Schuettpelz E, Korall P, Schneider H, Wolf PG (2006) A classification for extant ferns. Taxon 55:705–731CrossRef
    Takemura M, Oda K, Yamato K, Otha E, Nakamura Y, Nozato N, Akashi K, Ohyama K (1992) Gene clusters for ribosomal proteins in the mitochondrial genome of a liverwort, Marchantia polymorpha. Nucleic Acids Res 20:3199–3205PubMedCentral CrossRef PubMed
    Takenaka M (2014) How complex are the editosomes in plant organelles? Mol Plant 7:582–585CrossRef PubMed
    Takenaka M, Zehrmann A, Verbitskiy D, Härtel B, Brennicke A (2013) RNA Editing in Plants and Its Evolution. Annu Rev Genet 47:335–352CrossRef PubMed
    Tanaka Y, Tsuda M, Yasumoto K, Terachi T, Yamagishi H (2014) The complete mitochondrial genome sequence of Brassica oleracea and analysis of coexisting mitotypes. Curr Genet 60:277–284CrossRef PubMed
    Terasawa K, Odahara M, Kabeya Y, Kikugawa T, Sekine Y, Fujiwara M, Sato N (2007) The mitochondrial genome of the moss Physcomitrella patens sheds new light on mitochondrial evolution in land plants. Mol Biol Evol 24:699–709CrossRef PubMed
    Turmel M, Otis C, Lemieux C (2003) The mitochondrial genome of Chara vulgaris: insights into the mitochondrial DNA architecture of the last common ancestor of green algae and land plants. Plant Cell 15:1888–1903PubMedCentral CrossRef PubMed
    Turmel M, Otis C, Lemieux C (2013) Tracing the evolution of streptophyte algae and their mitochondrial genome. Genome Biol Evol 5:1817–1835PubMedCentral CrossRef PubMed
    Wolf PG, Rowe CA, Sinclair RB, Hasebe M (2003) Complete nucleotide sequence of the chloroplast genome from a leptosporangiate fern, Adiantum capillus-veneris L. DNA 10:59–65CrossRef
    Wolf PG, Rowe CA, Hasebe M (2004) High levels of RNA editing in a vascular plant chloroplast genome: analysis of transcripts from the fern Adiantum capillus-veneris. Gene 339:89–97CrossRef PubMed
  • 作者单位:Savino Bonavita (1)
    Teresa Maria Rosaria Regina (1)

    1. Dipartimento di Biologia, Ecologia e Scienze della Terra (DiBEST), Università della Calabria, via Ponte P. Bucci, 87036, Arcavacata di Rende, Cosenza, Italy
  • 刊物类别:Biomedical and Life Sciences
  • 刊物主题:Life Sciences
    Microbial Genetics and Genomics
    Microbiology
    Biochemistry
    Cell Biology
    Plant Sciences
    Proteomics
  • 出版者:Springer Berlin / Heidelberg
  • ISSN:1432-0983
文摘
Ferns are a large and evolutionarily critical group of vascular land plants for which quite limited mitochondrial gene content and genome organization data are, currently, available. This study reports that the gene for the ribosomal protein S3 (rps3) is preserved and physically clustered to an upstream rps19 and a downstream overlapping rpl16 locus in the mitochondrial DNA of the true fern Adiantum capillus-veneris L. Sequence analysis also revealed that the rps3 gene is interrupted by two cis-splicing group II introns, like the counterpart in lycopod and gymnosperm representatives. A preliminary polymerase chain reaction (PCR) survey confirmed a scattered distribution pattern of both the rps3 introns also in other fern lineages. Northern blot and reverse transcription (RT)–PCR analyses demonstrated that the three ribosomal protein genes are co-transcribed as a polycistronic mRNA and modified by RNA editing. Particularly, the U-to-C type editing amends numerous genomic stop codons in the A. capillus-veneris rps19, rps3 and rpl16 sequences, thus, assuring the synthesis of complete and functional polypeptides. Collectively, the findings from this study further expand our knowledge of the mitochondrial rps3 architecture and evolution, also, bridging the significant molecular data gaps across the so far underrepresented ferns and all land plants. Keywords Adiantum capillus-veneris L. Mitochondrial ribosomal protein genes Post-transcriptional gene regulation Seedless vascular plants

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700