Optimizing the morphology, mechanical and crystal properties of in-situ polypropylene/polystyrene blends by reactive extrusion
详细信息    查看全文
文摘
In this study, in-situ polypropylene/polystyrene (PP/PS) blends were prepared via a reactive extrusion technique. Fourier transform infrared spectroscopy (FTIR) analysis confirmed the generation of polypropylene-grafted-polystyrene (PP-g-PS) copolymer in the reactive process. The morphology of the in-situ PP/PS blend tended to form a homogeneous structure, as observed by scanning electron microscopy (SEM). Owing to the introduction of PP-g-PS in the reactive extrusion, a remarkable enhancement of mechanical properties was achieved for the in-situ PP/PS blend. The elongation at break of the in-situ PP/PS blend with 15 wt% PS can reach 500 %, over 10 times higher than that of the normal PP/PS blend. Differential scanning calorimetry (DSC) showed an increased crystallization temperature of PP, which can be attributed to the heterogeneous nucleation effect of the PS and grafted PS. The analysis of wide angle X-ray diffraction (WAXD) indicated the development of beta crystals in the in-situ PP/PS blend.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700