Utilization of aluminum hydroxide waste generated in fluoride adsorption and coagulation processes for adsorptive removal of cadmium ion
详细信息    查看全文
  • 作者:Jiawei Ju ; Ruiping Liu ; Zan He ; Huijuan Liu
  • 关键词:Al(OH)3 ; fluoride ; cadmium ; adsorption ; reclamation ; sequential extraction
  • 刊名:Frontiers of Environmental Science & Engineering
  • 出版年:2016
  • 出版时间:June 2016
  • 年:2016
  • 卷:10
  • 期:3
  • 页码:467-476
  • 全文大小:576 KB
  • 参考文献:1.Hu C Y, Lo S L, Kuan W H, Lee Y D. Removal of fluoride from semiconductor wastewater by electrocoagulation-flotation. Water Research, 2005, 39(5): 895–901CrossRef
    2.Zhang G, Gao Y, Zhang Y, Gu P. Removal of fluoride from drinking water by a membrane coagulation reactor (MCR). Desalination, 2005, 177(1–3): 143–155CrossRef
    3.Cooper C, Jiang J Q, Ouki S. Preliminary evaluation of polymeric Fe–and Al–modified clays as adsorbents for heavy metal removal in water treatment. Journal of Chemical Technology and Biotechnology (Oxford, Oxfordshire), 2002, 77(5): 546–551CrossRef
    4.Mahmoud M E, Osman M M, Hafez O F, Hegazi A H, Elmelegy E. Removal and preconcentration of lead (II) and other heavy metals from water by alumina adsorbents developed by surface-adsorbeddithizone. Desalination, 2010, 251(1–3): 123–130CrossRef
    5.Naiya T K, Bhattacharya A K, Das S K. Adsorption of Cd(II) and Pb (II) from aqueous solutions on activated alumina. Journal of Colloid and Interface Science, 2009, 333(1): 14–26CrossRef
    6.Granados-Correa F, Corral-Capulin N G, Olguín M T, Acosta-León C E. Comparison of the Cd (II) adsorption processes between boehmite (γ-AlOOH) and goethite (α-FeOOH). Chemical Engineering Journal, 2011, 171(3): 1027–1034CrossRef
    7.Orescanin V, Kollar R, Halkijevic I, Kuspilic M, Flegar V. Neutralization/purification of the wastewaters from printed circuit boards production using waste by-products. Journal of Environmental Science and Health. Part A: Environmental Science and Engineering & Toxic and Hazardous Substance Control, 2014, 49 (5): 540–544CrossRef
    8.Sun W, Yin K, Yu X. Effect of natural aquatic colloids on Cu(II) and Pb(II) adsorption by Al2O3 nanoparticles. Chemical Engineering Journal, 2013, 225(1): 464–473CrossRef
    9.Smiciklas I, Smiljanic S, Peric-Grujic A, Šljivic-Ivanovic M, Antonovic D. The influence of citrate anion on Ni (II) removal by raw red mud from aluminum industry. Chemical Engineering Journal, 2013, 214(1): 327–335CrossRef
    10.Lagergren S. Zur heorie der sogenannten adsorption geloster stoffe, Kungliga Svenska Vetenskapsakademiens. Handlingar, 1898, 24(4): 1–39
    11.Ho Y S, McKay G. Pseudo-second order model for sorption processes. Process Biochemistry, 1999, 34(5): 451–465CrossRef
    12.McKay G, Blair H, Gardner J. Adsorption of dyes on chitin. I. Equilibrium studies. Journal of Applied Polymer Science, 1982, 27 (8): 3043–3057CrossRef
    13.Liu H, Cai X, Wang Y, Chen J. Adsorption mechanism-based screening of cyclodextrin polymers for adsorption and separation of pesticides from water. Water Research, 2011, 45(11): 3499–3511CrossRef
    14.Liang J, Xu R, Jiang X, Wang Y, Zhao A, Tan W. Effect of arsenate on adsorption of Cd(II) by two variable charge soils. Chemosphere, 2007, 67(10): 1949–1955CrossRef
    15.Mansour M, Ossman M, Farag H. Removal of Cd (II) ion from waste water by adsorption onto polyaniline coated on sawdust. Desalination, 2011, 272(1–3): 301–305CrossRef
    16.Kinniburgh D, Syers J, Jackson M. Specific adsorption of trace amounts of calcium and strontium by hydrous oxides of iron and aluminum. Soil Science Society of America Journal, 1975, 39(3): 464–470CrossRef
    17.Breen C, Bejarano-Bravo C M, Madrid L, Thompson G, Mann B E. Na/Pb, Na/Cd and Pb/Cd exchange on a low iron Texas bentonite in the presence of competin H+ ion. Colloids and Surfaces. A, Physicochemical and Engineering Aspects, 1999, 155(2–3): 211–219CrossRef
    18.Liu Y, Zhao Q, Cheng G, Xu H. Exploring the mechanism of lead (II) adsorption from aqueous solution on ammonium citrate modified spent Lentinus edodes. Chemical Engineering Journal, 2011, 173(3): 792–800CrossRef
    19.Trivedi P, Axe L. Modeling Cd and Zn Sorption to Hydrous Metal Oxides. Environmental Science & Technology, 2000, 34(11): 2215–2223CrossRef
    20.Wagner C D, Riggs W M, Davis L E, Moulder J F. Handbook of Xray Photoelec-tron Spectroscopy. Eden Prairie, Minnesota: Physical Electronics Division, Perkin-Elmer Corporation, 1979
    21.Hirsch D, Nir S, Banin A. Prediction of cadmium complexation in solution and adsorption to montmorillonite. Soil Science Society of America Journal, 1989, 53(3): 716–721CrossRef
    22.Cheng C, Wang J, Yang X, Li A, Philippe C. Adsorption of Ni(II) and Cd(II) from water by novel chelating sponge and the effect of alkali-earth metal ions on the adsorption. Journal of Hazardous Materials, 2014, 264(1): 332–341CrossRef
  • 作者单位:Jiawei Ju (1) (2)
    Ruiping Liu (1)
    Zan He (1) (2)
    Huijuan Liu (1)
    Xiwang Zhang (3)
    Jiuhui Qu (1)

    1. State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
    2. University of Chinese Academy of Sciences, Beijing, 100039, China
    3. Department of Chemical Engineering, Monash University, Clayton, VIC, 3800, Australia
  • 刊物主题:Environment, general;
  • 出版者:Springer Berlin Heidelberg
  • ISSN:2095-221X
文摘
Although Al-based coagulation and adsorption processes have been proved highly efficient for fluoride (F) removal, the two processes both generate large amount of Al(OH)3 solid waste containing F (Al(OH)3-F). This study aimed to investigate the feasibility of utilizing Al(OH)3-F generated in Al(OH)3 adsorption (Al(OH)3-Fads) and coagulation (Al(OH)3-Fcoag) for the adsorption of cadmium ion (Cd(II)). The adsorption capacity of Al(OH)3-Fads and Al(OH)3-Fcoag for Cd(II) was similar as that of pristine aluminum hydroxide (Al(OH)3), being of 24.39 and 19.90 mg·g–1, respectively. The adsorption of Cd(II) onto Al(OH)3-Fads and Al(OH)3-Fcoag was identified to be dominated by ion-exchange with sodium ion (Na+) or hydrogen ion (H+), surface microprecitation, and electrostatic attraction. The maximum concentration of the leached fluoride from Al(OH)3-Fads and Al(OH)3-Fcoag is below the Chinese Class-I IndustrialWastewater Discharge Standard for fluoride (<10 mg·L–1). This study demonstrates that the Al(OH)3 solid wastes generated in fluoride removal process could be potentially utilized as a adsorbent for Cd(II) removal.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700