Neural fate decisions mediated by combinatorial regulation of Hes1 and miR-9
详细信息    查看全文
  • 作者:Shanshan Li ; Yanwei Liu ; Zengrong Liu ; Ruiqi Wang
  • 关键词:Neural fate decision ; Hes1 ; miR ; 9 ; Oscillation ; Bifurcation
  • 刊名:Journal of Biological Physics
  • 出版年:2016
  • 出版时间:January 2016
  • 年:2016
  • 卷:42
  • 期:1
  • 页码:53-68
  • 全文大小:1,220 KB
  • 参考文献:1.Kohwi, M., Doe, C.Q.: Temporal fate specification and neural progenitor competence during development. Nat. Rev. Neurosci. 14, 823–838 (2013)CrossRef
    2.Shimojo, H., Ohtsuka, T., Kageyama, R.: Oscillations in notch signaling regulate maintenance of neural progenitors. Neuron 58, 52–64 (2008)CrossRef
    3.Kabos, P., Kabosova, A., Neuman, T.: Blocking HES1 expression initiates GABAergic differentiation and induces the expression of p21(CIP1/WAF1) in human neural stem cells. J. Biol. Chem. 277, 8763–8766 (2002)CrossRef
    4.Imayoshi, I., Isomura, A., Harima, Y., Kawaguchi, K., Kori, H., Miyachi, H., Fujiwara, T., Ishidate, F., Kageyama, R.: Oscillatory control of factors determining multipotency and fate in mouse neural progenitors. Science 342, 1203–1208 (2013)CrossRef ADS
    5.Baek, J.H., Hatakeyama, J., Sakamoto, S., Ohtsuka, T., Kageyama, R.: Persistent and high levels of Hes1 expression regulate boundary formation in the developing central nervous system. Development 133, 2467–2476 (2006)CrossRef
    6.Hirata, H., Yoshiura, S., Ohtsuka, T., Bessho, Y., Harada, T., Yoshikawa, K., Kageyama, R.: Oscillatory expression of the bHLH factor Hes1 regulated by a negative feedback loop. Science 298, 840–843 (2002)CrossRef ADS
    7.Monk, N.A.: Oscillatory expression of Hes1, p53, and NF-kappaB driven by transcriptional time delays. Curr. Biol. 13, 1409–1413 (2003)CrossRef
    8.Zeiser, S., Müller, J., Liebscher, V.: Modeling the Hes1 oscillator. J. Comput. Biol. 14, 984–1000 (2007)MathSciNet CrossRef
    9.Momiji, H., Monk, N.A.: Oscillatory Notch-pathway activity in a delay model of neuronal differentiation. Phys. Rev. E. 80, 021930 (2009)CrossRef ADS
    10.Wang, R., Liu, K., Chen, L., Aihara, K.: Neural fate decisions mediated by trans-activation and cis-inhibition in Notch signaling. Bioinformatics 27, 3158–3165 (2011)CrossRef
    11.Bonev, B., Stanley, P., Papalopulu, N.: MicroRNA-9 Modulates Hes1 ultradian oscillations by forming a double-negative feedback loop. Cell Rep. 2, 10–18 (2012)CrossRef
    12.Goodfellow, M., Phillips, N.E., Manning, C., Galla, T., Papalopulu, N.: microRNA input into a neural ultradian oscillator controls emergence and timing of alternative cell states. Nat. Commun. 5, 3399 (2014)CrossRef ADS
    13.Pillai, R.S.: MicroRNA function: multiple mechanisms for a tiny RNA? RNA 11, 1753–1761 (2005)CrossRef
    14.Pasquinelli, A.E.: MicroRNAs and their targets: recognition, regulation and an emerging reciprocal relationship. Nat. Rev. Genet. 13, 271–282 (2012)
    15.Coolen, M., Katz, S., Bally-Cuif, L.: miR-9: a versatile regulator of neurogenesis. Front. Cell. Neurosci. 7, 220 (2013)CrossRef
    16.Zhao, C., Sun, G., Li, S., Shi, Y.: A feedback regulatory loop involving microRNA-9 and nuclear receptor TLX in neural stem cell fate determination. Nat. Struct. Mol. Biol. 16, 365–371 (2009)CrossRef
    17.Tan, S.L., Ohtsuka, T., González, A., Kageyama, R.: MicroRNA9 regulates neural stem cell differentiation by controlling Hes1 expression dynamics in the developing brain. Genes Cells 17, 952–961 (2012)CrossRef
    18.Conaco, C., Otto, S., Han, J.J., Mandel, G.: Reciprocal actions of REST and a microRNA promote neuronal identity. Proc. Natl. Acad. Sci. U.S.A. 103, 2422–2427 (2006)CrossRef ADS
    19.Bredenkamp, N., Seoighe, C., Illing, N.: Comparative evolutionary analysis of the FoxG1 transcription factor from diverse vertebrates identifies conserved recognition sites for microRNA regulation. Dev. Genes Evol. 217, 227–233 (2007)CrossRef
    20.Shibata, M., Nakao, H., Kiyonari, H., Abe, T., Aizawa, S.: MicroRNA-9 regulates neurogenesis in mouse telencephalon by targeting multiple transcription factors. J. Neurosci. 31, 3407–3422 (2011)CrossRef
    21.Widder, S., Schicho, J., Schuster, P.: Dynamic patterns of gene regulation I: simple two-gene systems. J. Theor. Biol. 246, 395–419 (2007)MathSciNet CrossRef
    22.Uriu, K., Morishita, Y., Iwasa, Y.: Random cell movement promotes synchronization of the segmentation clock. Proc. Natl. Acad. Sci. U.S.A. 107, 4979–4984 (2010)CrossRef ADS
    23.Zhou, W., Li, Y., Wang, X., Wu, L., Wang, Y.: MiR-206-mediated dynamic mechanism of the mammalian circadian clock. BMC Syst. Biol. 5, 141 (2011)CrossRef
    24.Zhou, P.P., Cai, S.M., Liu, Z.R., Wang, R.Q.: Mechanisms generating bistability and oscillations in microRNA-mediated motifs. Phys. Rev. E. 85, 041916 (2012)CrossRef ADS
    25.Lai, X., Bhattacharya, A., Schmitz, U., Kunz, M., Vera, J., Wolkenhauer, O.: A systems’ biology approach to study microRNA-mediated gene regulatory networks. Biomed. Res. Int. 2013, 703849 (2013)
    26.Kiparissides, A., Koutinas, M., Moss, T., Newman, J., Pistikopoulos, E.N., Mantalaris, A.: Modelling the Delta1/Notch1 pathway: in search of the mediator(s) of neural stem cell differentiation. PLoS ONE 6, e14668 (2011)CrossRef ADS
    27.Jensen, M.H., Sneppen, K., Tiana, G.: Sustained oscillations and time delays in gene expression of protein Hes1. FEBS Lett. 541, 176–177 (2003)CrossRef
    28.Decroly, O., Goldbeter, A.: Birhythmicity, chaos, and other patterns of temporal self-organization in a multiply regulated biochemical system. Proc. Natl. Acad. Sci. U.S.A. 79, 6917–6921 (1982)MATH MathSciNet CrossRef ADS
    29.Leloup, J.C., Goldbeter, A.: Chaos and birhythmicity in a model for circadian oscillations of the PER and TIM proteins in Drosophila. J. Theor. Biol. 198, 445–459 (1999)CrossRef
    30.Pendergast, J.S., Niswender, K.D., Yamazaki, S.: The complex relationship between the light-entrainable and methamphetamine-sensitive circadian oscillators: evidence from behavioral studies of Period-mutant mice. Eur. J. Neurosci. 38, 3044–3053 (2013)
    31.Kobayashi, T., Mizuno, H., Imayoshi, I., Furusawa, C., Shirahige, K., Kageyama, R.: The cyclic gene Hes1 contributes to diverse differentiation responses of embryonic stem cells. Genes Dev. 23, 1870–1875 (2009)CrossRef
    32.Hafizi, M., Atashi, A., Bakhshandeh, B., Kabiri, M., Nadri, S., Hosseini, R.H., Soleimani, M.: MicroRNAs as markers for neurally committed CD133+/CD34+ stem cells derived from human umbilical cord blood. Biochem. Genet. 51, 175–188 (2013)CrossRef
    33.Annibali, D., Gioia, U., Savino, M., Laneve, P., Caffarelli, E., Nasi, S.: A new module in neural differentiation control: two microRNAs upregulated by retinoic acid, miR-9 and -103, target the differentiation inhibitor ID2. PLoS ONE 7, e40269 (2012)CrossRef ADS
    34.Indulekha, C.L., Divya, T.S., Divya, M.S., Sanalkumar, R., Rasheed, V.A., Dhanesh, S.B., Sebin, A., George, A., James, J.: Hes-1 regulates the excitatory fate of neural progenitors through modulation of Tlx3 (HOX11L2) expression. Cell. Mol. Life Sci. 69, 611–627 (2012)CrossRef
    35.Maddodi, N., Bhat, K.M., Devi, S., Zhang, S.C., Setaluri, V.: Oncogenic BRAFV600E induces expression of neuronal differentiation marker MAP2 in melanoma cells by promoter demethylation and down-regulation of transcription repressor HES1. J. Biol. Chem. 285, 242–254 (2010)CrossRef
    36.Wolf, J., Becker-Weimann, S., Heinrich, R.: Analysing the robustness of cellular rhythms. Syst. Biol. (Stevenage) 2, 35–41 (2005)CrossRef
    37.Tian, X.J., Zhang, X.P., Liu, F., Wang, W.: Interlinking positive and negative feedback loops creates a tunable motif in gene regulatory networks. Phys. Rev. E. 80, 011926 (2009)CrossRef ADS
    38.Hart, Y., Alon, U.: The utility of paradoxical components in biological circuits. Mol. Cell 49, 213–221 (2013)CrossRef
  • 作者单位:Shanshan Li (1)
    Yanwei Liu (2)
    Zengrong Liu (1)
    Ruiqi Wang (2)

    1. Institute of Systems Biology, Shanghai University, Shanghai, China
    2. Department of Mathematics, Shanghai University, Shanghai, China
  • 刊物类别:Physics and Astronomy
  • 刊物主题:Physics
    Biophysics and Biomedical Physics
    Condensed Matter
    Statistical Physics
    Polymer Sciences
    Bioinformatics
    Neurosciences
  • 出版者:Springer Netherlands
  • ISSN:1573-0689
文摘
In the nervous system, Hes1 shows an oscillatory manner in neural progenitors but a persistent one in neurons. Many models involving Hes1 have been provided for the study of neural differentiation but few of them take the role of microRNA into account. It is known that a microRNA, miR-9, plays crucial roles in modulating Hes1 oscillations. However, the roles of miR-9 in controlling Hes1 oscillations and inducing transition between different cell fates still need to be further explored. Here we provide a mathematical model to show the interaction between miR-9 and Hes1, with the aim of understanding how the Hes1 oscillations are produced, how they are controlled, and further, how they are terminated. Based on the experimental findings, the model demonstrates the essential roles of Hes1 and miR-9 in regulating the dynamics of the system. In particular, the model suggests that the balance between miR-9 and Hes1 plays important roles in the choice between progenitor maintenance and neural differentiation. In addition, the synergistic (or antagonistic) effects of several important regulations are investigated so as to elucidate the effects of combinatorial regulation in neural decision-making. Our model provides a qualitative mechanism for understanding the process in neural fate decisions regulated by Hes1 and miR-9. Keywords Neural fate decision Hes1 miR-9 Oscillation Bifurcation

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700