Size-dependent growth rate of Nitzschia closterium at different concentrations of petroleum hydrocarbon
详细信息    查看全文
  • 作者:Rujun Yang (1)
    Hongjie Tang (1)
    Yu Xin (1)
    Xiulin Wang (1)
  • 关键词:Nitzschia closterium ; marine phytoplankton ; petroleum hydrocarbon ; cell size ; growth rate
  • 刊名:Journal of Ocean University of China
  • 出版年:2009
  • 出版时间:March 2009
  • 年:2009
  • 卷:8
  • 期:1
  • 页码:45-50
  • 全文大小:384KB
  • 参考文献:1. Augustí, S., 1991. Light environment within dense algal populations: cell size influences on self-shading. / J. Plankton Res., 13(4): 863-71. CrossRef
    2. Banse, K., 1976. Rates of growth, respiration and photosynthesis of unicellular algae as related to cell size -a review. / J. Phycol., 12: 135-40.
    3. Bate, G. C., and Crafford, S. D., 1985. Inhibition of phytoplankton photosynthesis by the WSF of used lubricating oil. / Mar. Pollut. Bull., 16(10): 401-04. CrossRef
    4. Bertalanffy, L. V., 1964. Basic concepts in quantitative biology of metabolism. / Helgol?nder Wissenschaftliche Meeresuntersuchungen, 9: 5-8. CrossRef
    5. Chan, A., 1980. Comparative physiological study of marine diatoms and dinoflagellates in relation to irradiance and cell size. II. Relationship between photosynthesis, growth and carbon/ chlorophyll a ratio. / J. Phycol., 16: 428-32. CrossRef
    6. El-Sheekh, M. M., El-Naggar, A. H., and Osman, M. E. H., 2000. Comparative studies on the green algae a Chlorella Homosphaera and Chlorella Vulgaris with respect to oil pollution in the river Nile. / Water Air Soil Pollut., 124: 187-04. CrossRef
    7. Finkel, Z. V., and Irwin, A. J., 2000. Modeling size-dependent photosynthesis: light absorption and the allometric rule. / J. Theor. Biol., 204: 361-69. CrossRef
    8. Jiang, Y., Wu, Z. H., and Han, X. R., 2002. Toxicity of Policyclic Aromatic hydrocarbons (HAPs) to marine Algae. / Mar. Chem., 26(1): 46-0.
    9. Kleiber, M., 1932. Body and size and metabolism. / Hilgardia, 6: 315-53.
    10. Laws, E. A., 1975. The importance of respiration losses in controlling the size distribution of marine phytoplankton. / Ecology, 56: 419-26. CrossRef
    11. Liu, X D., 1998. The role of the silicate involved in the community succession of the phytoplankton. / Mar. Environ. Sci., 15(2): 38-3.
    12. Montagnes, D. J. S., and Franklin, D. J., 2001. Effect of temperature on diatom volume, growth rate, and carbon and nitrogen content: Reconsidering some paradigms. / Limnol. Oceanogr., 46(8): 2008-018.
    13. Ohi, N., Ishiwata, Y., and Taguchi, S., 2002. Diel patterns in light absorption and absorption efficiency factors of Isochrysis Galbana (Prymnesiophyceae). / J. Phycol., 38: 730-37. CrossRef
    14. Perni, S., Andrew, P. W., and Shama, G., 2005. Estimating the maximum growth rate from microbial growth curves: definition is everything. / Food Microbiol., 22: 491-95. CrossRef
    15. Roseth, S., Edvardsson, T., Botten, T. M., Fuglestad, J., and Fonnum, F., 1996. Comparison of acute toxicity of process chemicals used in the oil refinery industry, tested with the diatom Chaetoceros gracilis, the flagellate Isochrysis galbana, and the zebra fish, Brachydanio rerio. / Environ. Tox. Chem., 15(7): 1211-217. CrossRef
    16. Schmidt-Nielsen, K., 1970. Energy metabolism, body size, and problems of scaling. / Fed. Proc. Fed. Am. Soc. Exp. Biol., 29: 1524-532.
    17. Singh, A. K., and Gaur, J. P., 1990. Effects of petroleum oils and their paraffinic, asphaltic and aromatic fractions on photosynthesis and respiration of microalgae. / Ecotox. Environ. Safe., 19(1): 8-6. CrossRef
    18. Siron, R., Pelletier, E., Delille, D., and Roy, S., 1993. Fate and effects of dispersed crude oil under icy conditions simulated in mesocosms. / Mar. Environ. Res., 35: 273-02. CrossRef
    19. Tang, E. P. Y., and Peters, R. H., 1995. The allometry of algal respiration. / J. Plankton Res., 17(2): 303-15. CrossRef
    20. Thompson, P. A., Harrison, P. J., and Parslow, J. S., 1991. Influence of irradiance on cell volume and carbon quota for ten species of marine phytoplankton. / J. Phycol., 27: 351-60. CrossRef
    21. Thornley, J. H. M., and France, J., 2005. An open-ended logistic-based growth function. / Ecol. Model., 184: 257-61. CrossRef
    22. Tukai, Z., and Bohdanowicz, J., 1995. Diesel-fuel-oil induced morphological changes in some / Scenedesmus species (Chlorococcales). / Algolog. Stud., (77): 83-4.
    23. Wang, X. L., Yang, R. J., and Zhu C. J., 2004. Studies on size effect on Chaetoceros curvisetus in different concentrations of petroleum hydrocarbon. / J. Ocean Univ. Qingdao, 34(5): 849-53.
    24. Wang, X. L, Zhang, Y. Y., Yang, R. J., and Zhan, Y. J., 2005. Effect s of Pb (II) on the growth of HAB Algae at different concentrations of macro nutrients (NO3-N, PO4-P). / J. Ocean Univ. Qingdao, 35(1): 133-36.
    25. William, M. L. Jr., 1989. Further evidence for anomalous size scaling of respiration in phytoplankton. / J. Phycol., 25: 395-97. CrossRef
    26. Yang, R. J., Wang X. L., and Han X. R., 2003. The research on the size distribution and size effect of marine phytoplankton. / Mar. Chem., 27(11): 5-.
    27. Yang, R. J., Wang X. L., and Shi X. Y., 2004. Study on the size distribution of marine phytoplankton. / High Technol. Lett., 14(6): 89-4 (in Chinese with English abstract).
    28. Yang, R. J., Wang, X., Zhang, Y. Y., and Zhan, Y. J., 2006. Influence of cell equivalent spherical diameter on the growth rate and cell density of marine phytoplankton. / J. Exp. Mar. Biol. Ecol., 331: 33-0. CrossRef
    29. Zhang, L., Wang, X. L., and Han, X. R., 2002. Effects of petroleum hydrocarbon on the growth of marine algae: experiment versus model. / J. Ocean Univ. Qingdao, 32(5): 804-10.
    30. Zhang, J., Wang, X. L., Zhu, C. J., Han, X. R., and Shi, X. Y., 2003. Bioconcentration of alkanes in water-accomodated fraction of petroleum hydrocarbon associated with No.0 diesel by phytoplankton in a mesocosm experiment. / J. Ocean Univ. Qingdao, 33(3): 433-38.
    31. Zhao, D. Z., 2000. / Inspection and Estimation of Harmful Bloom Algae in Bohai Sea. China Ocean Press, Beijing, 67-0.
    32. Zwietering, M. H., Jongenburger, I., Rombouts, F. M., and Van’t Riet, K., 1990. Modeling of the bacterial growth curve. / Appl. Environ. Microbiol., 56: 1875-881.
  • 作者单位:Rujun Yang (1)
    Hongjie Tang (1)
    Yu Xin (1)
    Xiulin Wang (1)

    1. College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao, 266003, P. R. China
  • ISSN:1993-5021
文摘
The maximum growth rate of Nitzschia closterium at various concentrations of petroleum hydrocarbon was studied. The influence of petroleum hydrocarbon on cell size as a function of concentration was discussed. The relationship between maximum growth rate of Nitzschia closterium and cell median equivalent spherical diameter (MESD) was also carefully studied. The experimental results showed that the growth rate of Nitzschia closterium was generally suppressed by petroleum hydrocarbon, which had greater effects at both low and high concentrations than at intermediate concentrations. No significant changes in cell size distribution were observed during the growth period of Nitzschia closterium. The Gaussian function could give a clear description of the cell size distribution of Nitzschia closterium, and the MESD value ranged from 2.71 to 6.82 μm. The MESD decreased when the cell was exposed to petroleum hydrocarbon, and the reduction of cell MESD was much more significant at both relatively high and low hydrocarbon concentrations. The presence of petroleum hydrocarbon changed the relationship between μmax and MESD from an allometric function to a U-shaped curve. When the MESD was below 5.07 μm, μmax decreased along with increased MESD, whereas when MESD was above 5.07 μm, μmax increased along with MESD, which deviated from the allometric model.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700