Studying Human Brain Inflammation in Leptomeningeal and Choroid Plexus Explant Cultures
详细信息    查看全文
  • 作者:Mike Dragunow ; Sheryl Feng ; Justin Rustenhoven ; Maurice Curtis…
  • 关键词:Pericyte ; Meningeal macrophages ; Choroid plexus ; Meningeal fibroblasts ; Scar formation ; TGFβ1 ; PDGF
  • 刊名:Neurochemical Research
  • 出版年:2016
  • 出版时间:March 2016
  • 年:2016
  • 卷:41
  • 期:3
  • 页码:579-588
  • 全文大小:7,060 KB
  • 参考文献:1.Dragunow M (2013) Meningeal and choroid plexus cells—novel drug targets for CNS disorders. Brain Res 1501:32–55CrossRef PubMed
    2.Howell OW et al (2011) Meningeal inflammation is widespread and linked to cortical pathology in multiple sclerosis. Brain 134(Pt 9):2755–2771CrossRef PubMed
    3.Garabedian BV, Lemaigre-Dubreuil Y, Mariani J (2000) Central origin of IL-1beta produced during peripheral inflammation: role of meninges. Brain Res Mol Brain Res 75(2):259–263CrossRef PubMed
    4.Wu Z, Zhang J, Nakanishi H (2005) Leptomeningeal cells activate microglia and astrocytes to induce IL-10 production by releasing pro-inflammatory cytokines during systemic inflammation. J Neuroimmunol 167(1–2):90–98CrossRef PubMed
    5.Hamano T et al (1997) Amyloid beta-protein (A beta) accumulation in the leptomeninges during aging and in Alzheimer disease. J Neuropathol Exp Neurol 56(8):922–932CrossRef PubMed
    6.Gibbons HM, Dragunow M (2009) Adult human brain cell culture for neuroscience research. Int J Biochem Cell Biol 42(6):844–856CrossRef PubMed
    7.Dragunow M (2008) The adult human brain in preclinical drug development. Nat Rev Drug Discov 7(8):659–666CrossRef PubMed
    8.Jansson D et al (2014) A role for human brain pericytes in neuroinflammation. J Neuroinflammation 11:104CrossRef PubMed PubMedCentral
    9.Smith AM et al (2013) Adult human glia, pericytes and meningeal fibroblasts respond similarly to IFNy but not to TGFbeta1 or M-CSF. PLoS One 8(12):e80463CrossRef PubMed PubMedCentral
    10.Decimo I et al (2011) Nestin- and doublecortin-positive cells reside in adult spinal cord meninges and participate in injury-induced parenchymal reaction. Stem Cells 29(12):2062–2076CrossRef PubMed PubMedCentral
    11.Nakagomi T et al (2011) Ischemia-induced neural stem/progenitor cells in the pia mater following cortical infarction. Stem Cells Dev 20(12):2037–2051CrossRef PubMed
    12.Nakagomi T, Nakano-Doi A, Matsuyama T (2015) Leptomeninges: a novel stem cell niche harboring ischemia-induced neural progenitors. Histol Histopathol 30(4):391–399PubMed
    13.Bifari F et al (2009) Novel stem/progenitor cells with neuronal differentiation potential reside in the leptomeningeal niche. J Cell Mol Med 13(9B):3195–3208CrossRef PubMed PubMedCentral
    14.Nakagomi T et al (2015) Do vascular pericytes contribute to neurovasculogenesis in the CNS as multipotent vascular stem cells? Stem Cells Dev 24(15):1730–1739CrossRef
    15.Nakagomi T et al (2015) Brain vascular pericytes following ischemia have multipotential stem cell activity to differentiate into neural and vascular lineage cells. Stem Cells 33(6):1962–1974CrossRef PubMed
    16.Dragunow M (2008) High-content analysis in neuroscience. Nat Rev Neurosci 9(10):779–788CrossRef PubMed
    17.Gibbons HM et al (2007) Cellular composition of human glial cultures from adult biopsy brain tissue. J Neurosci Methods 166(1):89–98CrossRef PubMed
    18.Lim JH et al (2007) Extracellular signal-regulated kinase involvement in human astrocyte migration. Brain Res 1164:1–13CrossRef PubMed
    19.Lind CR et al (2006) The mitogen-activated/extracellular signal-regulated kinase kinase 1/2 inhibitor U0126 induces glial fibrillary acidic protein expression and reduces the proliferation and migration of C6 glioma cells. Neuroscience 141(4):1925–1933CrossRef PubMed
    20.Ozen I et al (2014) Brain pericytes acquire a microglial phenotype after stroke. Acta Neuropathol 128(3):381–396CrossRef PubMed PubMedCentral
    21.Nakagomi T et al (2012) Leptomeningeal-derived doublecortin-expressing cells in poststroke brain. Stem Cells Dev 21(13):2350–2354CrossRef PubMed PubMedCentral
    22.Goritz C et al (2011) A pericyte origin of spinal cord scar tissue. Science 333(6039):238–242CrossRef PubMed
    23.Kimura-Kuroda J et al (2009) An in vitro model of the inhibition of axon growth in the lesion scar formed after central nervous system injury. Mol Cell Neurosci 43(2):177–187CrossRef PubMed
    24.Soderblom C et al (2013) Perivascular fibroblasts form the fibrotic scar after contusive spinal cord injury. J Neurosci 33(34):13882–13887CrossRef PubMed PubMedCentral
  • 作者单位:Mike Dragunow (2)
    Sheryl Feng (1)
    Justin Rustenhoven (1)
    Maurice Curtis (1)
    Richard Faull (1)

    2. Department of Pharmacology and Clinical Pharmacology, The University of Auckland, Private Bag 92019, 1142, Auckland, New Zealand
    1. Centre for Brain Research and Brain Research New Zealand, The University of Auckland, Auckland, New Zealand
  • 刊物类别:Biomedical and Life Sciences
  • 刊物主题:Biomedicine
    Neurosciences
    Biochemistry
    Neurology
  • 出版者:Springer Netherlands
  • ISSN:1573-6903
文摘
The meninges (dura, pia and arachnoid) are critical membranes encasing and protecting the brain within the skull. The leptomeninges, which comprise the arachnoid and pia, have many functions beyond brain protection including roles in neurogenesis, fibrotic scar formation and brain inflammation. Similarly, the choroid plexus plays important roles in normal brain function but is also involved in brain inflammation. We have begun studying the role of human leptomeninges and choroid plexus in brain inflammation and leptomeninges in fibrotic scar formation, using human brain derived explant cultures. To study the composition of the cells generated in these explants we undertook immunocytochemical characterisation. Cells, mainly pericytes and meningeal macrophages, emerge from leptomeningeal explants (LME’s) and respond to inflammatory mediators by producing inflammatory molecules. LME-derived cells also respond to mechanical injury and cytokines, providing an in vitro human brain model of fibrotic scar formation. Choroid plexus explants (CPE’s) generate epithelial cells, pericytes and microglia/macrophages. CPE-derived cells also respond to inflammatory mediators. LME and CPE explants survive and generate cells for many months in vitro and provide a remarkable opportunity to study basic mechanisms of human brain inflammation and fibrosis and to test human-active anti-inflammatory and anti-scarring treatments.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700