LEMUR: Large European module for solar Ultraviolet Research
详细信息    查看全文
  • 作者:Luca Teriaca (1) teriaca@mps.mpg.de <br>Vincenzo Andretta (2) <br>Frédéric Auchère (3) <br>Charles M. Brown (4) <br>Eric Buchlin (3) <br>Gianna Cauzzi (5) <br>J. Len Culhane (6) <br>Werner Curdt (1) <br>Joseph M. Davila (7) <br>Giulio Del Zanna (8) <br>George A. Doschek (4) <br>Silvano Fineschi (9) <br>Andrzej Fludra (10) <br>Peter T. Gallagher (11) <br>Lucie Green (6) <br>Louise K. Harra (6) <br>Shinsuke Imada (12) <br>Davina Innes (1) <br>Bernhard Kliem (13) <br>Clarence Korendyke (4) <br>John T. Mariska (4) <br>Valentin Martínez-Pillet (14) <br>Susanna Parenti (15) <br>Spiros Patsourakos (16) <br>Hardi Peter (1) <br>Luca Poletto (17) <br>Robert J. Rutten (18) <br>Udo Schühle (1) <br>Martin Siemer (19) <br>Toshifumi Shimizu (12) <br>Hector Socas-Navarro (14) <br>Sami K. Solanki (1) <br>Daniele Spadaro (20) <br>Javier Trujillo-Bueno (14) <br>Saku Tsuneta (21) <br>Santiago Vargas Dominguez (6) <br>Jean-Claude Vial (3) <br>Robert Walsh (22) <br>Harry P. Warren (4) <br>Thomas Wiegelmann (1) <br>Berend Winter (6) <br>Peter Young (23)
  • 关键词:Sun ; atmosphere – Space vehicles ; instruments – Techniques ; spectroscopy – ESA cosmic vision
  • 刊名:Experimental Astronomy
  • 出版年:2012
  • 出版时间:October 2012
  • 年:2012
  • 卷:34
  • 期:2
  • 页码:273-309
  • 全文大小:1.4 MB
  • 参考文献:1. Trujillo Bueno, J.: Recent advances in chromospheric and coronal polarization diagnostics. In: Hasan, S.S., Rutten, R.J. (eds.) Magnetic Coupling between the Interior and Atmosphere of the Sun, p. 118 (2010) <br>2. Harra, L.K., Sakao, T., Mandrini, C.H., Hara, H., Imada, S., Young, P.R., van Driel-Gesztelyi, L., Baker, D.: Outflows at the edges of active regions: contribution to solar wind formation? Astrophys. J. Lett. 676, L147 (2008) <br>3. Bryans, P., Young, P.R., Doschek, G.A.: Multiple component outflows in an active region observed with the EUV imaging spectrometer on Hinode. Astrophys. J. 715, 1012 (2010) <br>4. Schrijver, C.J., De Rosa, M.L.: Photospheric and heliospheric magnetic fields. Sol. Phys. 212, 165 (2003) <br>5. Del Zanna, G., Mason, H.E., Cirtain, J.: SOHO/CDS observations of quiescent active region loops. In: SOHO-17, vol. 617. ESA Special Publication (2006) <br>6. Innes, D.E., Inhester, B., Axford, W.I., Wilhelm, K.: Bi-directional plasma jets produced by magnetic reconnection on the Sun. Nature 386, 811 (1997) <br>7. Teriaca, L., Banerjee, D., Doyle, J.G.: SUMER observations of Doppler shift in the quiet Sun and in an active region. Astron. Astrophys. 349, 636 (1999) <br>8. Aschwanden, M.J., Fletcher, L., Schrijver, C.J., Alexander, D.: Coronal loop oscillations observed with the Transition Region and Coronal Explorer. Astrophys. J. 520, 880 (1999) <br>9. Wang, T., Solanki, S.K., Curdt, W., Innes, D.E., Dammasch, I.E.: Doppler shift oscillations of hot solar coronal plasma seen by SUMER: a signature of loop oscillations? Astrophys. J. Lett. 574, L101 (2002) <br>10. Mariska, J.T., Muglach, K.: Doppler-shift, intensity, and density oscillations observed with the extreme ultraviolet imaging spectrometer on Hinode. Astrophys. J. 713, 573 (2010) <br>11. Wiegelmann, T., Neukirch, T.: An optimization principle for the computation of MHD equilibria in the solar corona. Astron. Astrophys. 457, 1053 (2006) <br>12. De Pontieu, B., McIntosh, S.W., Carlsson, M., Hansteen, V.H., Tarbell, T.D., Schrijver, C.J., Title, A.M., Shine, R.A., Tsuneta, S., Katsukawa, Y., Ichimoto, K., Suematsu, Y., Shimizu, T., Nagata, S.: Chromospheric Alfvénic waves strong enough to power the solar wind. Science 318, 1574 (2007) <br>13. Cirtain, J.W., Golub, L., Lundquist, L., van Ballegooijen, A., Savcheva, A., Shimojo, M., DeLuca, E., Tsuneta, S., Sakao, T., Reeves, K., Weber, M., Kano, R., Narukage, N., Shibasaki, K.: Evidence for Alfvén waves in solar X-ray jets. Science 318, 1580 (2007) <br>14. De Pontieu, B., McIntosh, S.W., Hansteen, V.H., Schrijver, C.J.: Observing the roots of solar coronal heating—in the chromosphere. Astrophys. J. Lett. 701, L1 (2009) <br>15. De Pontieu, B., McIntosh, S.W., Carlsson, M., Hansteen, V.H., Tarbell, T.D., Boerner, P., Martinez-Sykora, J., C.Schrijver, J., Title, A.M.: The origins of hot plasma in the solar corona. Science 331, 55 (2011) <br>16. Del Zanna, G., Mason, H.E.: Solar active regions: SOHO/CDS and TRACE observations of quiescent coronal loops. Astron. Astrophys. 406, 1089 (2003) <br>17. Warren, H.P., Kim, D.M., DeGiorgi, A.M., Ugarte-Urra, I.: Modeling evolving coronal loops with observations from stereo, Hinode, and trace. Astrophys. J. 713, 1095 (2010) <br>18. Bhattacharjee, A., Huang, Y., Yang, H., Rogers, B.: Fast reconnection in high-Lundquist-number plasmas due to the plasmoid instability. Phys. Plasmas 16(11), 112102 (2009) <br>19. Edmondson, J.K., Antiochos, S.K., DeVore, C.R., Zurbuchen, T.H.: Formation and reconnection of three-dimensional current sheets in the solar corona. Astrophys. J. 718, 72 (2010) <br>20. Manchester, W. IV: Solar atmospheric dynamic coupling due to shear motions driven by the lorentz force. Astrophys. J. 666, 532 (2007) <br>21. Green, L.M., Kliem, B., Wallace, A.J.: Photospheric flux cancellation and associated flux rope formation and eruption. Astron. Astrophys. 526, A2 (2011) <br>22. van Ballegooijen, A.A., Martens, P.C.H.: Formation and eruption of solar prominences. Astrophys. J. 343, 971 (1989) <br>23. Attrill, G.D.R., Harra, L.K., van Driel-Gesztelyi, L., Wills-Davey, M.J.: Revealing the fine structure of coronal dimmings and associated flows with Hinode/EIS. Implications for understanding the source regions of sustained outflow following CMEs. Sol. Phys. 264, 119 (2010) <br>24. Krieger, A.S., Timothy, A.F., Roelof, E.C.: A coronal hole and its identification as the source of a high velocity solar wind stream. Sol. Phys. 29, 505 (1973) <br>25. Wilhelm, K., Dammasch, I.E., Marsch, E., Hassler, D.M.: On the source regions of the fast solar wind in polar coronal holes. Astron. Astrophys. 353, 749 (2000) <br>26. Tu, C., Zhou, C., Marsch, E., Xia, L., Zhao, L., Wang, J., Wilhelm, K.: Solar wind origin in coronal funnels. Science 308, 519 (2005) <br>27. Wang, Y., Ko, Y., Grappin, R.: Slow solar wind from open regions with strong low-coronal heating. Astrophys. J. 691, 760 (2009) <br>28. Del Zanna, G., Bromage, B.J.I., Mason, H.E.: Spectroscopic characteristics of polar plumes. Astron. Astrophys. 398, 743 (2003) <br>29. Teriaca, L., Poletto, G., Romoli, M., Biesecker, D.A.: The nascent solar wind: origin and acceleration. Astrophys. J. 588, 566 (2003) <br>30. Gabriel, A.H., Bely-Dubau, F., Lemaire, P.: The contribution of polar plumes to the fast solar wind. Astrophys. J. 589, 623 (2003) <br>31. Banerjee, D., Gupta, G.R., Teriaca, L.: Propagating MHD waves in coronal holes. Space Sci. Rev. 158, 267–288 (2011) <br>32. Tsuneta, S., Ichimoto, K., Katsukawa, Y., Lites, B.W., Matsuzaki, K., Nagata, S., Orozco Suárez, D., Shimizu, T., Shimojo, M., Shine, R.A., Suematsu, Y., Suzuki, T.K., Tarbell, T.D., Title, A.M.: The magnetic landscape of the Sun’s polar region. Astrophys. J. 688, 1374 (2008) <br>33. Doschek, G.A., Warren, H.P., Mariska, J.T., Muglach, K., Culhane, J.L., Hara, H., Watanabe, T.: Flows and nonthermal velocities in solar active regions observed with the EUV imaging spectrometer on Hinode: a tracer of active region sources of heliospheric magnetic fields? Astrophys. J. 686, 1362–1371 (2008) <br>34. Del Zanna, G., Aulanier, G., Klein, K.-L., T?r?k, T.: A single picture for solar coronal outflows and radio noise storms. Astron. Astrophys. 526, A137 (2011)
  • 作者单位:1. Max-Planck-Institut für Sonnensystemforschung, Max-Planck-Str. 2, 37191 Katlenburg-Lindau, Germany2. INAF—Osservatorio Astronomico di Capodimonte, Salita Moiariello 16, 80131 Napoli, Italy3. Institut d’Astrophysique Spatiale, CNRS/Université Paris-Sud 11, UMR8617, Batiment 121, 91405 Orsay, France4. Space Science Division, Naval Research Laboratory, Washington, DC 20375-5320, USA5. INAF—Osservatorio Astrofisico di Arcetri, 50125 Florence, Italy6. UCL—Mullard Space Science Laboratory, Holmbury St. Mary, Dorking, Surrey, RH5 6NT UK7. NASA—Goddard Space Flight Center, Greenbelt, MD, USA8. University of Cambridge, Wilberforce road, Cambridge, CB2 0WA UK9. INAF—Osservatorio Astronomico di Torino, 20 Strada Osservatorio, Pino Torinese, Italy10. STFC Rutherford Appleton Laboratory, Harwell Oxford, Didcot, OX11 0QX UK11. School of Physics, Trinity College Dublin, Dublin 2, Ireland12. Institute of Space and Astronautical Science, JAXA, 3-1-1 Yoshinodai, Chuo-ku, Sagamihara, Kanagawa, 252-5210 Japan13. Institute of Physics and Astronomy, University of Potsdam, Karl-Liebknecht-Str. 24-25, Potsdam, 14476 Germany14. Instituto de Astrofísica de Canarias, 38205 La Laguna, Tenerife, Spain15. Royal Observatory of Belgium, 3 Av. Circulaire, 1180 Bruxelles, Belgium16. Department of Physics-Astrogeophysics Section, University of Ioannina, GR 451 10 Ioannina, Greece17. CNR—Institute of Photonics and Nanotechnologies, Padua, Italy18. Sterrekundig Instituut Utrecht, Utrecht, The Netherlands19. DLR—Institute of Space Systems, Bremen, Germany20. INAF—Osservatorio Astrofisico di Catania, Via S. Sofia 78, 95123 Catania, Italy21. National Astronomical Observatory of Japan, 2-21-1 Osawa, Mitaka, Tokyo, 181-8588 Japan22. University of Central Lancashire, Lancashire, PR1 2HE UK23. College of Science, George Mason University, 4400 University Drive, Fairfax, VA 22030-4422, USA
  • ISSN:1572-9508
文摘
The solar outer atmosphere is an extremely dynamic environment characterized by the continuous interplay between the plasma and the magnetic field that generates and permeates it. Such interactions play a fundamental role in hugely diverse astrophysical systems, but occur at scales that cannot be studied outside the solar system. Understanding this complex system requires concerted, simultaneous solar observations from the visible to the vacuum ultraviolet (VUV) and soft X-rays, at high spatial resolution (between 0.1′′ and 0.3′′), at high temporal resolution (on the order of 10 s, i.e., the time scale of chromospheric dynamics), with a wide temperature coverage (0.01 MK to 20 MK, from the chromosphere to the flaring corona), and the capability of measuring magnetic fields through spectropolarimetry at visible and near-infrared wavelengths. Simultaneous spectroscopic measurements sampling the entire temperature range are particularly important. These requirements are fulfilled by the Japanese Solar-C mission (Plan B), composed of a spacecraft in a geosynchronous orbit with a payload providing a significant improvement of imaging and spectropolarimetric capabilities in the UV, visible, and near-infrared with respect to what is available today and foreseen in the near future. The Large European Module for solar Ultraviolet Research (LEMUR), described in this paper, is a large VUV telescope feeding a scientific payload of high-resolution imaging spectrographs and cameras. LEMUR consists of two major components: a VUV solar telescope with a 30 cm diameter mirror and a focal length of 3.6 m, and a focal-plane package composed of VUV spectrometers covering six carefully chosen wavelength ranges between 170 ? and 1270 ?. The LEMUR slit covers 280′′ on the Sun with 0.14′′ per pixel sampling. In addition, LEMUR is capable of measuring mass flows velocities (line shifts) down to 2 km s???1 or better. LEMUR has been proposed to ESA as the European contribution to the Solar C mission.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700