Genetic and pharmacological suppression of polyglutamine-dependent neuronal dysfunction in Caenorhabditis elegans
详细信息    查看全文
  • 作者:J. Alex Parker (1)
    Sébastien Holbert (1)
    Emmanuel Lambert (1)
    Salima Abderrahmane (1)
    Christian Néri (1)
  • 关键词:Polyglutamine expansion ; neuronal dysfunction ; C. elegans ; genetic suppression ; drug screening
  • 刊名:Journal of Molecular Neuroscience
  • 出版年:2004
  • 出版时间:February 2004
  • 年:2004
  • 卷:23
  • 期:1-2
  • 页码:61-67
  • 全文大小:107KB
  • 参考文献:1. Bence N. F., Sampat R. M., and Kopito R. R. (2001) Impairment of the ubiquitin-proteasome system by protein aggregation. / Science 292, 1552-555. CrossRef
    2. Boutell J. M., Thomas P., Neal J. W., Weston V. J., Duce J., Harper P. S., and Jones A. L. (1999) Aberrant interactions of transcriptional repressor proteins with the Huntington’s disease gene product, huntingtin. / Hum. Mol. Genet. 8, 1647-655. CrossRef
    3. Boutell J. M., Wood J. D., Harper P. S., and Jones A. L. (1998): Huntingtin interacts with cystathionine betasynthase. / Hum. Mol. Genet. 7, 371-78. CrossRef
    4. Burke J. R., Enghild J. J., Martin M. E., Jou Y. S., Myers R. M., Roses A. D., et al. (1996) Huntingtin and DRPLA proteins selectively interact with the enzyme GAPDH. / Nat. Med. 2, 347-50. CrossRef
    5. Chalfie M. and Au M. (1989) Genetic control of differentiation of the Caenohabditis elegans touch receptor neurons. / Science 243, 1027-033. CrossRef
    6. Colomer V., Engelender S., Sharp A. H., Duan K., Cooper J. K., Lanahan A., et al. (1997) Huntingtin-associated protein 1 (HAP1) binds to a Trio-like polypeptide, with a rac1 guanine nucleotide exchange factor domain. / Hum. Mol. Genet. 6, 1519-525. CrossRef
    7. Davies S. W., Turmaine M., Cozens B. A., DiFiglia M., Sharp A. H., Ross C. A., et al. (1997) Formation of neuronal intranuclear inclusions underlies the neurological dysfunction in mice transgenic for the HD mutation. / Cell 90, 537-48. CrossRef
    8. DiFiglia M., Sapp E., Chase K. O., Davies S. W., Bates G. P., Vonsattel J. P., and Aronin N. (1997) Aggregation of huntingtin in neuronal intranuclear inclusions and dystrophic neurites in brain. / Science 277, 1990-993. CrossRef
    9. DiFiglia M., Sapp E., Chase K., Schwarz C., Meloni A., Young C., et al. (1995) Huntingtin is a cytoplasmic protein associated with vesicles in human and rat brain neurons. / Neuron 14, 1075-081. CrossRef
    10. Dragatsis I., Levine M. S., and Zeitlin S. (2000) Inactivation of Hdh in the brain and testis results in progressive neurodegeneration and sterility in mice. / Nat. Genet. 26, 300-06. CrossRef
    11. Driscoll M. and Gerstbrein, B. (2003) Dying for a cause: invertebrate genetics takes on human neurodegeneration. / Nat. Rev. Genet. 4, 181-94. CrossRef
    12. Dunah A. W., Jeong H., Griffin A., Kim Y. M., Standaert D. G., Hersch S. M., et al. (2002) Sp1 and TAFII130 transcriptional activity disrupted in early Huntington’s disease. / Science 296, 2238-243. CrossRef
    13. Faber P. W., Alter J. R., MacDonald M. E. and Hart A. C. (1999) Polyglutamine-mediated dysfunction and apoptotic death of a Caerorhabditis elegans sensory neuron. / Proc. Natl. Acad. Sci. USA 96, 179-84. CrossRef
    14. Faber P. W., Barnes G. T., Srinidhi J., Chen J., Gusella J. F., and MacDonald M. E. (1998) Huntingtin interacts with a family of WW domain proteins. / Hum. Mol. Genet. 7, 1463-474. CrossRef
    15. The Huntington Disease Collaborative Research Group. (1993) A novel gene containing a trinucleotide repeat that is expanded and unstable on Huntington’s disease chromosomes. / Cell 72, 971-83. CrossRef
    16. Gusella J. F. and MacDonald M. E. (1998) Huntingtin: a single bait hooks many species. / Curr. Opin. Neurobiol. 8, 425-30. CrossRef
    17. Harper P. S. (1992) The epidemiology of Huntington’s disease. / Hum. Genet. 89, 365-76. CrossRef
    18. Hattula K. and Peranen J. (2000) FIP-2, a coiled-coil protein, links Huntingtin to Rab8 and modulates cellular morphogenesis. / Curr. Biol. 10, 1603-606. CrossRef
    19. Heemskerk J., Tobin A. J., and Bain L. J. (2002a) Teaching old drugs new tricks. Meeting of the Neurodegeneration Drug Screening Consortium, 7- April 2002, Washington, D.C. / Trends Neurosci. 25, 494-96. CrossRef
    20. Heemskerk J., Tobin A. J. and Ravina B. (2002b) From chemical to drug: neurodegeneration drug screening and the ethics of clinical trials. / Nat. Neurosci. 5(Suppl.), 1027-029. CrossRef
    21. Holbert S., Dedeoglu A., Humbert S., Saudou F., Ferrante R. J., and Neri C. (2003) Cdc42-interacting protein 4 binds to huntingtin: neuropathologic and biological evidence for a role in Huntington’s disease. / Proc. Natl. Acad. Sci. USA 100, 2712-717. CrossRef
    22. Holbert S., Denghien I., Kiechle T., Rosenblatt A., Wellington C., Hayden M. R, et al. (2001) The Gln-Ala repeat transcriptional activator CA150 interacts with huntingtin: neuropathologic and genetic evidence for a role in Huntington’s disease pathogenesis. / Proc. Natl. Acad. Sci. USA 98, 1811-816. CrossRef
    23. Kalchman M. A., Koide H. B., McCutcheon K., Graham R. K., Nichol K., Nishiyama K., et al. (1997) HIP1, a human homologue of S. cerevisiae Sla2p, interacts with membrane-associated huntingtin in the brain. / Nat. Genet. 16, 44-3. CrossRef
    24. Kazemi-Esfarjani P. and Benzer S. (2000) Genetic suppression of polyglutamine toxicity in Drosophila. / Science 287, 1837-840. CrossRef
    25. Kegel K. B., Meloni A. R., Yi Y., Kim Y. J., Doyle E., Cuiffo B. G., et al. (2002) Huntingtin is present in the nucleus, interacts with the transcriptional corepressor C-terminal binding protein, and represses transcription. / J. Biol. Chem. 277, 7466-476. CrossRef
    26. Leavitt B. R., Guttman J. A., Hodgson J. G., Kimel G. H., Singaraja R., Vogl A. W., and Hayden M. R. (2001) Wildtype huntingtin reduces the cellular toxicity of mutant huntingtin in vivo. / Am. J. Hum. Genet. 68, 313-24. CrossRef
    27. Li S. H., Cheng A. L., Zhou H., Lam S., Rao M., Li H., and Li X. J. (2002) Interaction of huntington disease protein with transcriptional activator sp1. / Mol. Cell. Biol. 22, 1277-287. CrossRef
    28. Liu Y. F., Deth R. C., and Devys D. (1997) SH3 domain-dependent association of huntingtin with epidermal growth factor receptor signaling complexes. / J. Biol. Chem. 272, 8121-124. CrossRef
    29. Liu Y. F., Dorow D., and Marshall J. (2000) Activation of MLK2-mediated signaling cascades by polyglutamine-expanded huntingtin. / J. Biol. Chem. 275, 19035-9040. CrossRef
    30. Luthi-Carter R., Hanson S. A., Strand A. D., Bergstrom D. A., Chun W., Peters N. L., et al. (2002) Dysregulation of gene expression in the R6/2 model of polyglutamine disease: parallel changes in muscle and brain. / Hum. Mol. Genet. 11, 1911-926. CrossRef
    31. Luthi-Carter R., Strand A., Peters N. L., Solano S. M., Hollingsworth Z. R., Menon A. S., et al. (2000) Decreased expression of striatal signaling genes in a mouse model of Huntington’s disease. / Hum. Mol. Genet. 9, 1259-271. CrossRef
    32. Marsh J. L., Walker H., Theisen H., Zhu Y. Z., Fielder T., Purcell J., and Thompson L. M. (2000) Expanded polyglutamine peptides alone are intrinsically cytotoxic and cause neurodegeneration in Drosophila. / Hum. Mol. Genet. 9, 13-5. CrossRef
    33. McCampbell A., Taylor J. P., Taye A. A., Robitschek J., Li M., Walcott J., et al. (2000) CREB-binding protein sequestration by expanded polyglutamine. / Hum. Mol. Genet. 9, 2197-202. CrossRef
    34. Mitani S., Du H., Hall D. H., Driscoll M., and Chalfie M. (1993) Combinatorial control of touch receptor neuron expression in Caenorhabditis elegans. / Development 119, 773-83.
    35. Modregger J., DiProspero N. A., Charles V., Tagle D. A., and Plomann M. (2002) PACSIN 1 interacts with huntingtin and is absent from synaptic varicosities in presymptomatic huntington’s disease brains. / Hum. Mol. Genet. 11, 2547-558. CrossRef
    36. Nasir J., Floresco S. B., O’Kusky J. R., Diewert V. M., Richman J. M., Zeisler J., et al. (1995) Targeted disruption of the Huntington’s disease gene results in embryonic lethality and behavioral and morphological changes in heterozygotes. / Cell 81, 811-23. CrossRef
    37. Neri C. (2001) New light on polyglutamine neurodegenerative disorders: interference with transcription. / Trends Mol. Med. 7, 283-84. CrossRef
    38. Nucifora F. C., Jr., Sasaki M., Peters M. F., Huang H., Cooper J. K., Yamada M., et al. (2001) Interference by huntingtin and atrophin-1 with cbp-mediated transcription leading to cellular toxicity. / Science 291, 2423-428. CrossRef
    39. Parker J. A., Connolly J. B., Wellington C., Hayden M., Dausset J., and Neri C. (2001) Expanded polyglutamines in Caenorhabditis elegans cause axonal abnormalities and severe dysfunction of PLM mechanosensory neurons without cell death. / Proc. Natl. Acad. Sci. USA 98, 13318-3323. CrossRef
    40. Perutz M. F. and Windle A. H. (2001) Cause of neural death in neurodegenerative diseases attributable to expansion of glutamine repeats. / Nature 412, 143-44. CrossRef
    41. Petersen A., Mani K., and Brundin P. (1999) Recent advances on the pathogenesis of Huntington’s disease. / Exp. Neurol. 157, 1-8. CrossRef
    42. Ross C. A., Wood J. D., Schilling G., Peters M. F., Nucifora F. C., Jr., Cooper J. K., et al. (1999) Polyglutamine pathogenesis. / Philos. Trans. R. Soc. Lond. B Biol. Sci. 354, 1005-011. CrossRef
    43. Rubinsztein D. C. (2002) Lessons from animal models of Huntington’s disease. / Trends Genet. 18, 202-09. CrossRef
    44. Satyal S. H., Schmidt E., Kitagawa K., Sondheimer N., Lindquist S., Kramer J. M., and Morimoto R. I. (2000) Polyglutamine aggregates alter protein folding homeostasis in Caenorhabditis elegans. / Proc. Natl. Acad. Sci. USA 97, 5750-755. CrossRef
    45. Saudou F., Finkbeiner S., Devys D., and Greenberg M. E. (1998) Huntingtin acts in the nucleus to induce apoptosis but death does not correlate with the formation of intranuclear inclusions. / Cell 95, 55-6. CrossRef
    46. Singaraja R. R., Hadano S., Metzler M., Givan S., Wellington C. L., Warby S., et al. (2002) HIP14, a novel ankyrin domain-containing protein, links huntingtin to intracellular trafficking and endocytosis. / Hum. Mol. Genet. 11, 2815-828. CrossRef
    47. Sisodia S. S. (1998) Nuclear inclusions in glutamine repeat disorders: are they pernicious, coincidental, or beneficial? / Cell 95, 1-. CrossRef
    48. Sittler A., Walter S., Wedemeyer N., Hasenbank R., Scherzinger E., Eickhoff H., et al. (1998) SH3GL3 associates with the Huntingtin exon 1 protein and promotes the formation of polygln-containing protein aggregates. / Mol. Cell 2, 427-36. CrossRef
    49. Steffan J. S., Kazantsev A., Spasic-Boskovic O., Greenwald M., Zhu Y. Z., Gohler H., et al. (2000) The Huntington’s disease protein interacts with p53 and CREB-binding protein and represses transcription. / Proc. Natl. Acad. Sci. USA 97, 6763-768. CrossRef
    50. Sulston J. E., Schierenberg E., White J. G., and Thomson J. N. (1983) The embryonic cell lineage of the nematode Caenorhabditis elegans. / Dev. Biol. 100, 64-19. CrossRef
    51. Sun Y., Savanenin A., Reddy P. H., and Liu Y. F. (2001) Polyglutamine-expanded huntingtin promotes sensitization of N-methyl-D-aspartate receptors via post-synaptic density 95. / J. Biol. Chem. 276, 24713-4718. CrossRef
    52. Trottier Y., Lutz Y., Stevanin G., Imbert G., Devys D., Cancel G., et al. (1995) Polyglutamine expansion as a pathological epitope in Huntington’s disease and four dominant cerebellar ataxias. / Nature 378, 403-06. CrossRef
    53. Velier J., Kim M., Schwarz C., Kim T. W., Sapp E., Chase K., et al. (1998) Wild-type and mutant huntingtins function in vesicle trafficking in the secretory and endocytic pathways. / Exp. Neurol. 152, 34-0. CrossRef
    54. Waelter S., Boeddrich A., Lurz R., Scherzinger E., Lueder G., Lehrach H., and Wanker E. E. (2001) Accumulation of mutant huntingtin fragments in aggresome-like inclusion bodies as a result of insufficient protein degradation. / Mol. Biol. Cell 12, 1393-407.
    55. Wanker E. E., Rovira C., Scherzinger E., Hasenbank R., Walter S., Tait D., et al. (1997) HIP-I: a huntingtin interacting protein isolated by the yeast two-hybrid system. / Hum. Mol. Genet. i 6, 487-95. CrossRef
    56. Warrick J. M., Paulson H. L., Gray-Board G. L., Bui Q. T., Fischbeck K. H., Pittman R. N., and Bonini N. M. (1998) Expanded polyglutamine protein forms nuclear inclusions and causes neural degeneration in Drosophila. / Cell 93, 939-49. CrossRef
    57. Way J. C. and Chalfie M. (1988) mec-3, a hemeoboxcontaining gene that specifies differentiation of the touch receptor neurons in C. elegans. / Cell 54, 5-6. CrossRef
    58. Wellington C. L. and Hayden M. R. (2000) Caspases and neurodegeneration: on the cutting edge of new therapeutic approaches. / Clin. Genet. 57, 1-0. CrossRef
    59. White J. G., Southgate E., Thomson J. N., and Brenner S. (1986) The structure of the nervous system of the nematode / Caenorhabditis elegans. / Philos. Trans. R. Soc. Lond. B Biol. Sci. 314, 1-40. CrossRef
    60. White J. K., Auerbach W., Duyao M. P., Vonsattel J. P., Gusella J. F., Joyner A. L., and MacDonald M. E. (1997) Huntingtin is required for neurogenesis and is not impaired by the Huntington’s disease CAG expansion. / Nat. Genet. 17, 404-10. CrossRef
    61. Wood J. D., MacMillan J. C., Harper P. S., Lowenstein P. R., and Jones A. L. (1996) Partial characterisation of murine huntingtin and apparent variations in the subcellular localisation of huntingtin in human, mouse and rat brain. / Hum. Mol. Genet. 5, 481-87. CrossRef
    62. Wyttenbach A., Swartz J., Kita H., Thykjaer T., Carmichael J., Bradley J., et al. (2001) Polyglutamine expansions cause decreased CRE-mediated transcription and early gene expression changes prior to cell death in an inducible cell model of Huntington’s disease. / Hum. Mol. Genet. 10, 1829-845. CrossRef
    63. Zuccato C., Ciammola A., Rigamonti D., Leavitt B. R., Goffredo D., Conti L., et al. (2001) Loss of huntingtin-mediated BDNF gene transcription in Huntington’s disease. / Science 293, 493-98. CrossRef
  • 作者单位:J. Alex Parker (1)
    Sébastien Holbert (1)
    Emmanuel Lambert (1)
    Salima Abderrahmane (1)
    Christian Néri (1)

    1. Laboratory of Genomic Biology, Inserm Avenir Group, Centre Paul Broca, 75014, Paris, France
文摘
The identification of disease genes for several neurodegenerative illnesses has allowed for the development of disease models in experimental organisms. We discuss our approach to studying Huntington’s disease, the best characterized of the polyglutamine (polyQ) expansion disorders. We have developed a system in Caenorhabditis elegans to study the effects of (polyQ)-dependent neuronal dysfunction at the resolution of two neurons in screening for genetic and pharmacological suppression. Our data suggest that C. elegans might be instructive in searching for targets and active compounds against polyglutamine neuronal toxicity.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700