Krüppel-like Factor 5 contributes to pulmonary artery smooth muscle proliferation and resistance to apoptosis in human pulmonary arterial hypertension
详细信息    查看全文
  • 作者:Audrey Courboulin (1)
    Véronique L Tremblay (1)
    Marjorie Barrier (1)
    Jolyane Meloche (1)
    Maria Helena Jacob (1)
    Mathilde Chapolard (1)
    Malik Bisserier (1)
    Roxane Paulin (1)
    Caroline Lambert (1)
    Steeve Provencher (1)
    Sébastien Bonnet (1)
  • 关键词:Pulmonary arterial hypertension ; KLF5 ; STAT3 ; proliferation ; apoptosis.
  • 刊名:Respiratory Research
  • 出版年:2011
  • 出版时间:December 2011
  • 年:2011
  • 卷:12
  • 期:1
  • 全文大小:672KB
  • 参考文献:1. Christman BW, McPherson CD, Newman JH, King GA, Bernard GR, Groves BM, Loyd JE: An imbalance between the excretion of thromboxane and prostacyclin metabolites in pulmonary hypertension. / N Engl J Med 1992,327(2):70-5. CrossRef
    2. Steudel W, Ichinose F, Huang PL, Hurford WE, Jones RC, Bevan JA, Fishman MC, Zapol WM: Pulmonary vasoconstriction and hypertension in mice with targeted disruption of the endothelial nitric oxide synthase (NOS 3) gene. / Circ Res 1997,81(1):34-1.
    3. Stewart DJ, Levy RD, Cernacek P, Langleben D: Increased plasma endothelin-1 in pulmonary hypertension: marker or mediator of disease? / Ann Intern Med 1991,114(6):464-69.
    4. Perros F, Montani D, Dorfmuller P, Durand-Gasselin I, Tcherakian C, Le Pavec J, Mazmanian M, Fadel E, Mussot S, Mercier O, / et al.: Platelet-derived growth factor expression and function in idiopathic pulmonary arterial hypertension. / Am J Respir Crit Care Med 2008,178(1):81-8. CrossRef
    5. Bonnet S, Michelakis ED, Porter CJ, Andrade-Navarro MA, Thebaud B, Bonnet S, Haromy A, Harry G, Moudgil R, McMurtry MS, / et al.: An abnormal mitochondrial-hypoxia inducible factor-1 alpha-Kv channel pathway disrupts oxygen sensing and triggers pulmonary arterial hypertension in fawn hooded rats: similarities to human pulmonary arterial hypertension. / Circulation 2006,113(22):2630-641. CrossRef
    6. Bonnet S, Rochefort G, Sutendra G, Archer SL, Haromy A, Webster L, Hashimoto K, Bonnet SN, Michelakis ED: The nuclear factor of activated T cells in pulmonary arterial hypertension can be therapeutically targeted. / Proc Natl Acad Sci USA 2007,104(27):11418-1423. CrossRef
    7. McMurtry MS, Archer SL, Altieri DC, Bonnet S, Haromy A, Harry G, Bonnet S, Puttagunta L, Michelakis ED: Gene therapy targeting survivin selectively induces pulmonary vascular apoptosis and reverses pulmonary arterial hypertension. / J Clin Invest 2005,115(6):1479-491. CrossRef
    8. Yildiz P: Molecular mechanisms of pulmonary hypertension. / Clin Chim Acta 2009,403(1-):9-6. CrossRef
    9. Dumas de la Roque E, Savineau JP, Bonnet S: Dehydroepiandrosterone: A new treatment for vascular remodeling diseases including pulmonary arterial hypertension. / Pharmacol Ther 2010,126(2):186-99. CrossRef
    10. Dupuis J, Hoeper MM: Endothelin receptor antagonists in pulmonary arterial hypertension. / Eur Respir J 2008,31(2):407-15. CrossRef
    11. Li B, Yang L, Shen J, Wang C, Jiang Z: The antiproliferative effect of sildenafil on pulmonary artery smooth muscle cells is mediated via upregulation of mitogen-activated protein kinase phosphatase-1 and degradation of extracellular signal-regulated kinase 1/2 phosphorylation. / Anesth Analg 2007,105(4):1034-041. table of contents CrossRef
    12. Ghofrani HA, Seeger W, Grimminger F: Imatinib for the treatment of pulmonary arterial hypertension. / N Engl J Med 2005,353(13):1412-413. CrossRef
    13. Archer S, Rich S: Primary pulmonary hypertension: a vascular biology and translational research "Work in progress". / Circulation 2000,102(22):2781-791.
    14. Dong JT, Chen C: Essential role of KLF5 transcription factor in cell proliferation and differentiation and its implications for human diseases. / Cell Mol Life Sci 2009,66(16):2691-706. CrossRef
    15. Liu R, Zheng HQ, Zhou Z, Dong JT, Chen C: KLF5 promotes breast cell survival partially through fibroblast growth factor-binding protein 1-pERK-mediated dual specificity MKP-1 protein phosphorylation and stabilization. / J Biol Chem 2009,284(25):16791-6798. CrossRef
    16. Chen C, Benjamin MS, Sun X, Otto KB, Guo P, Dong XY, Bao Y, Zhou Z, Cheng X, Simons JW, / et al.: KLF5 promotes cell proliferation and tumorigenesis through gene regulation and the TSU-Pr1 human bladder cancer cell line. / Int J Cancer 2006,118(6):1346-355. CrossRef
    17. Sakamoto H, Sakamaki T, Kanda T, Hoshino Y, Sawada Y, Sato M, Sato H, Oyama Y, Nakano A, Takase S, / et al.: Smooth muscle cell outgrowth from coronary atherectomy specimens in vitro is associated with less time to restenosis and expression of a key Transcription factor KLF5/BTEB2. / Cardiology 2003,100(2):80-5. CrossRef
    18. Nagai R, Suzuki T, Aizawa K, Shindo T, Manabe I: Significance of the transcription factor KLF5 in cardiovascular remodeling. / J Thromb Haemost 2005,3(8):1569-576. CrossRef
    19. Shindo T, Manabe I, Fukushima Y, Tobe K, Aizawa K, Miyamoto S, Kawai-Kowase K, Moriyama N, Imai Y, Kawakami H, / et al.: Kruppel-like zinc-finger transcription factor KLF5/BTEB2 is a target for angiotensin II signaling and an essential regulator of cardiovascular remodeling. / Nat Med 2002,8(8):856-63.
    20. Bonnet S, Archer SL, Allalunis-Turner J, Haromy A, Beaulieu C, Thompson R, Lee CT, Lopaschuk GD, Puttagunta L, Bonnet S, / et al.: A mitochondria-K+ channel axis is suppressed in cancer and its normalization promotes apoptosis and inhibits cancer growth. / Cancer Cell 2007,11(1):37-1. CrossRef
    21. Bonnet S, Paulin R, Sutendra G, Dromparis P, Roy M, Watson KO, Nagendran J, Haromy A, Dyck JR, Michelakis ED: Dehydroepiandrosterone reverses systemic vascular remodeling through the inhibition of the Akt/GSK3-{beta}/NFAT axis. / Circulation 2009,120(13):1231-240. CrossRef
    22. Boengler K, Hilfiker-Kleiner D, Drexler H, Heusch G, Schulz R: The myocardial JAK/STAT pathway: from protection to failure. / Pharmacol Ther 2008,120(2):172-85. CrossRef
    23. Grote K, Luchtefeld M, Schieffer B: JANUS under stress--role of JAK/STAT signaling pathway in vascular diseases. / Vascul Pharmacol 2005,43(5):357-63. CrossRef
    24. Darnell JE Jr: STATs and gene regulation. / Science 1997,277(5332):1630-635. CrossRef
    25. Banes-Berceli AK, Ketsawatsomkron P, Ogbi S, Patel B, Pollock DM, Marrero MB: Angiotensin II and endothelin-1 augment the vascular complications of diabetes via JAK2 activation. / Am J Physiol Heart Circ Physiol 2007,293(2):H1291-299. CrossRef
    26. Csiszar A, Labinskyy N, Olson S, Pinto JT, Gupte S, Wu JM, Hu F, Ballabh P, Podlutsky A, Losonczy G, / et al.: Resveratrol prevents monocrotaline-induced pulmonary hypertension in rats. / Hypertension 2009,54(3):668-75. CrossRef
    27. Schermuly RT, Dony E, Ghofrani HA, Pullamsetti S, Savai R, Roth M, Sydykov A, Lai YJ, Weissmann N, Seeger W, / et al.: Reversal of experimental pulmonary hypertension by PDGF inhibition. / J Clin Invest 2005,115(10):2811-821. CrossRef
    28. Frasch HF, Marshall C, Marshall BE: Endothelin-1 is elevated in monocrotaline pulmonary hypertension. / Am J Physiol 1999,276(2 Pt 1):L304-10.
    29. Bourillot PY, Aksoy I, Schreiber V, Wianny F, Schulz H, Hummel O, Hubner N, Savatier P: Novel STAT3 target genes exert distinct roles in the inhibition of mesoderm and endoderm differentiation in cooperation with Nanog. / Stem Cells 2009,27(8):1760-771. CrossRef
    30. Amirak E, Zakkar M, Evans PC, Kemp PR: Perfusion of veins at arterial pressure increases the expression of KLF5 and cell cycle genes in smooth muscle cells. / Biochem Biophys Res Commun 2010,391(1):818-23. CrossRef
    31. Nandan MO, Chanchevalap S, Dalton WB, Yang VW: Kruppel-like factor 5 promotes mitosis by activating the cyclin B1/Cdc2 complex during oncogenic Ras-mediated transformation. / FEBS Lett 2005,579(21):4757-762. CrossRef
    32. Yang Y, Goldstein BG, Chao HH, Katz JP: KLF4 and KLF5 regulate proliferation, apoptosis and invasion in esophageal cancer cells. / Cancer Biol Ther 2005,4(11):1216-221. CrossRef
    33. He M, Han M, Zheng B, Shu YN, Wen JK: Angiotensin II stimulates KLF5 phosphorylation and its interaction with c-Jun leading to suppression of p21 expression in vascular smooth muscle cells. / J Biochem 2009,146(5):683-91. CrossRef
    34. Fujiu K, Manabe I, Ishihara A, Oishi Y, Iwata H, Nishimura G, Shindo T, Maemura K, Kagechika H, Shudo K, / et al.: Synthetic retinoid Am80 suppresses smooth muscle phenotypic modulation and in-stent neointima formation by inhibiting KLF5. / Circ Res 2005,97(11):1132-141. CrossRef
    35. McMurtry MS, Archer SL, Altieri DC, Bonnet S, Haromy A, Harry G, Puttagunta L, Michelakis ED: Gene therapy targeting survivin selectively induces pulmonary vascular apoptosis and reverses pulmonary arterial hypertension. / J Clin Invest 2005,115(6):1479-491. CrossRef
    36. Montorsi M, Maggioni M, Falleni M, Pellegrini C, Donadon M, Torzilli G, Santambrogio R, Spinelli A, Coggi G, Bosari S: Survivin gene expression in chronic liver disease and hepatocellular carcinoma. / Hepatogastroenterology 2007,54(79):2040-044.
    37. Murakami M, Sakai H, Kodama A, Mori T, Maruo K, Yanai T, Masegi T: Expression of the anti-apoptotic factors Bcl-2 and survivin in canine vascular tumours. / J Comp Pathol 2008,139(1):1-. CrossRef
    38. Ryan BM, Konecny GE, Kahlert S, Wang HJ, Untch M, Meng G, Pegram MD, Podratz KC, Crown J, Slamon DJ, / et al.: Survivin expression in breast cancer predicts clinical outcome and is associated with HER2, VEGF, urokinase plasminogen activator and PAI-1. / Ann Oncol 2006,17(4):597-04. CrossRef
    39. Sakao S, Taraseviciene-Stewart L, Lee JD, Wood K, Cool CD, Voelkel NF: Initial apoptosis is followed by increased proliferation of apoptosis-resistant endothelial cells. / Faseb J 2005.
    40. Zhu N, Gu L, Findley HW, Chen C, Dong JT, Yang L, Zhou M: KLF5 Interacts with p53 in regulating survivin expression in acute lymphoblastic leukemia. / J Biol Chem 2006,281(21):14711-4718. CrossRef
    41. Wan H, Luo F, Wert SE, Zhang L, Xu Y, Ikegami M, Maeda Y, Bell SM, Whitsett JA: Kruppel-like factor 5 is required for perinatal lung morphogenesis and function. / Development 2008,135(15):2563-572. CrossRef
    42. Toshner M, Voswinckel R, Southwood M, Al-Lamki R, Howard LS, Marchesan D, Yang J, Suntharalingam J, Soon E, Exley A, / et al.: Evidence of dysfunction of endothelial progenitors in pulmonary arterial hypertension. / Am J Respir Crit Care Med 2009,180(8):780-87. CrossRef
    43. Kumekawa M, Fukuda G, Shimizu S, Konno K, Odawara M: Inhibition of monocyte chemoattractant protein-1 by Kruppel-like factor 5 small interfering RNA in the tumor necrosis factor- alpha-activated human umbilical vein endothelial cells. / Biol Pharm Bull 2008,31(8):1609-613. CrossRef
    44. Zhan Y, Brown C, Maynard E, Anshelevich A, Ni W, Ho IC, Oettgen P: Ets-1 is a critical regulator of Ang II-mediated vascular inflammation and remodeling. / J Clin Invest 2005,115(9):2508-516. CrossRef
    45. Aizawa K, Suzuki T, Kada N, Ishihara A, Kawai-Kowase K, Matsumura T, Sasaki K, Munemasa Y, Manabe I, Kurabayashi M, / et al.: Regulation of platelet-derived growth factor-A chain by Kruppel-like factor 5: new pathway of cooperative activation with nuclear factor-kappaB. / J Biol Chem 2004,279(1):70-6. CrossRef
    46. Rehman J, Archer SL: A proposed mitochondrial-metabolic mechanism for initiation and maintenance of pulmonary arterial hypertension in fawn-hooded rats: the Warburg model of pulmonary arterial hypertension. / Adv Exp Med Biol 2010, 661:171-85. CrossRef
    47. Mori A, Moser C, Lang SA, Hackl C, Gottfried E, Kreutz M, Schlitt HJ, Geissler EK, Stoeltzing O: Up-regulation of Kruppel-like factor 5 in pancreatic cancer is promoted by interleukin-1 beta signaling and hypoxia-inducible factor-1 alpha. / Mol Cancer Res 2009,7(8):1390-398. CrossRef
    48. Cheng Y, Liu X, Yang J, Lin Y, Xu DZ, Lu Q, Deitch EA, Huo Y, Delphin ES, Zhang C: MicroRNA-145, a novel smooth muscle cell phenotypic marker and modulator, controls vascular neointimal lesion formation. / Circ Res 2009,105(2):158-66. CrossRef
    49. Caruso P, Maclean MR, Khanin R, McClure J, Soon E, Southwood M, McDonald RA, Greig JA, Robertson KE, Masson R, / et al.: Dynamic Changes in Lung MicroRNA Profiles During the Development of Pulmonary Hypertension Due to Chronic Hypoxia and Monocrotaline. / Arterioscler Thromb Vasc Biol 2010.
    50. Courboulin A, Paulin R, Giguere NJ, Saksouk N, Perreault T, Meloche J, Paquet ER, Biardel S, Provencher S, Cote J, / et al.: Role for miR-204 in human pulmonary arterial hypertension. / J Exp Med 2011.
    51. Paulin R, Courboulin A, Meloche J, Mainguy V, Dumas de la Roque E, Saksouk N, Cote J, Provencher S, Sussman MA, Bonnet S: Signal transducers and activators of transcription-3/pim1 axis plays a critical role in the pathogenesis of human pulmonary arterial hypertension. / Circulation 2011,123(11):1205-215. CrossRef
    52. Sehgal PB, Mukhopadhyay S, Patel K, Xu F, Almodovar S, Tuder RM, Flores SC: Golgi dysfunction is a common feature in idiopathic human pulmonary hypertension and vascular lesions in SHIV-nef-infected macaques. / Am J Physiol Lung Cell Mol Physiol 2009,297(4):L729-37. CrossRef
    53. Brock M, Trenkmann M, Gay RE, Michel BA, Gay S, Fischler M, Ulrich S, Speich R, Huber LC: Interleukin-6 modulates the expression of the bone morphogenic protein receptor type II through a novel STAT3-microRNA cluster 17/92 pathway. / Circ Res 2009,104(10):1184-191. CrossRef
  • 作者单位:Audrey Courboulin (1)
    Véronique L Tremblay (1)
    Marjorie Barrier (1)
    Jolyane Meloche (1)
    Maria Helena Jacob (1)
    Mathilde Chapolard (1)
    Malik Bisserier (1)
    Roxane Paulin (1)
    Caroline Lambert (1)
    Steeve Provencher (1)
    Sébastien Bonnet (1)

    1. Department of Medicine, Faculty of Medicine, Laval University, Quebec, QC, Canada
文摘
Background Pulmonary arterial hypertension (PAH) is a vascular remodeling disease characterized by enhanced proliferation of pulmonary artery smooth muscle cell (PASMC) and suppressed apoptosis. This phenotype has been associated with the upregulation of the oncoprotein survivin promoting mitochondrial membrane potential hyperpolarization (decreasing apoptosis) and the upregulation of growth factor and cytokines like PDGF, IL-6 and vasoactive agent like endothelin-1 (ET-1) promoting PASMC proliferation. Krüppel-like factor 5 (KLF5), is a zinc-finger-type transcription factor implicated in the regulation of cell differentiation, proliferation, migration and apoptosis. Recent studies have demonstrated the implication of KLF5 in tissue remodeling in cardiovascular diseases, such as atherosclerosis, restenosis, and cardiac hypertrophy. Nonetheless, the implication of KLF5 in pulmonary arterial hypertension (PAH) remains unknown. We hypothesized that KLF5 up-regulation in PAH triggers PASMC proliferation and resistance to apoptosis. Methods and results We showed that KFL5 is upregulated in both human lung biopsies and cultured human PASMC isolated from distal pulmonary arteries from PAH patients compared to controls. Using stimulation experiments, we demonstrated that PDGF, ET-1 and IL-6 trigger KLF-5 activation in control PASMC to a level similar to the one seen in PAH-PASMC. Inhibition of the STAT3 pathway abrogates KLF5 activation in PAH-PASMC. Once activated, KLF5 promotes cyclin B1 upregulation and promotes PASMC proliferation and triggers survivin expression hyperpolarizing mitochondria membrane potential decreasing PASMC ability to undergo apoptosis. Conclusion We demonstrated for the first time that KLF5 is activated in human PAH and implicated in the pro-proliferative and anti-apoptotic phenotype that characterize PAH-PASMC. We believe that our findings will open new avenues of investigation on the role of KLF5 in PAH and might lead to the identification of new therapeutic targets.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700