n × [0, 1] ??sup class="a-plus-plus"> n is a continuous vector field. The solution x(t) = φ(t, y, λ) is uniquely determined by the initial condition x(0) = y = φ(0, y, λ) and can be continued to the whole axis (?∞, +? for all λ ?[0, 1]. We obtain conditions ensuring the preservation of the property of global asymptotic stability of the stationary solution of such a system as the parameter λ varies." />
On the deformation method of study of global asymptotic stability
详细信息    查看全文
  • 作者:G. é. Grishanina (1) <br> N. G. Inozemtseva (1) <br> M. B. Sadovnikova (2) <br>
  • 关键词:matrix first ; order differential equation ; global asymptotic stability of solutions ; deformation method ; Lyapunov stability
  • 刊名:Mathematical Notes
  • 出版年:2014
  • 出版时间:March 2014
  • 年:2014
  • 卷:95
  • 期:3-4
  • 页码:316-323
  • 全文大小:
  • 参考文献:1. N. N. Bogolyubov and Yu. A. Mitropol’skii, / Asymptotic Methods in the Theory of Nonlinear Oscillations (Nauka, Moscow, 1974) [in Russian]. <br> 2. A. V. Borisov, V. V. Kozlov, and I. S. Mamaev, “Asymptotic stability and associated problems of dynamics of falling heavy rigid body,-Nelin. Din. 3(3), 255-96 (2007). <br> 3. A. V. Borisov, V. V. Kozlov, and I. S. Mamaev, “Asymptotic stability and associated problems of dynamics of falling rigid body,-Regul. Chaotic Dyn. 12(5), 531-65 (2007). blank" title="It opens in new window">CrossRef <br> 4. B. I. Sadovnikov, N. G. Inozemtseva, and V. I. Inozemtsev, “The correlation function and the thermodynamic quantities of the mixed model,-EChAYa 41, 1982-989 (2010). <br> 5. B. I. Sadovnikov, N. G. Inozemtseva, and V. I. Inozemtsev, “The correlation function and the thermodynamic quantities of the mixed system,-in / International Bogolyubov Conference, Abstracts (Moscow-Dubna, 2009), p. 247. <br> 6. E. A. Barabashin and N. N. Krasovskii, “On the existence of Lyapunov functions in the case of asymptotic stability in the large,-Prikl. Mat. Mekh. 18(3), 345-50 (1954). <br> 7. G. é. Grishanina, N. G. Inozemtseva, and B. I. Sadovnikov, “On global asymptotic stability and stability of saddle solutions at infinity,-Mat. Zametki 93(4), 624-29 (2013) [Math. Notes 93 (4), 624-28 (2013)]. blank" title="It opens in new window">CrossRef <br> 8. G. é. Grishanina, “Global asymptotic stability and stability of saddle solutions at infinity,-in / Voronezh Mathematical Workshop, Abstracts (Voronezh, 2010), pp. 47-8 [in Russian]. <br> 9. N. A. Bobylev, “Deformation of functionals having a unique critical point,-Mat. Zametki 34(3), 387-98 (1983) [Math. Notes 34 (3), 676-82 (1983)]. <br> 10. N. A. Bobylev and G. V. Kondakov, “Deformation method for investigation of nonsmooth optimization problems,-Avtomat. i Telemekh., No. 5, 46-7 (1991) [Automat. Remote Control 52 (5), 628-38 (1991)]. <br> 11. V. V. Nemytskii and V. V. Stepanov, / Qualitative Theory of Differential Equations (Gostekhizdat, Moscow, 1949) [in Russian]. <br>
  • 作者单位:G. é. Grishanina (1) <br> N. G. Inozemtseva (1) <br> M. B. Sadovnikova (2) <br><br>1. International University of Nature, Society, and Mankind, Dubna, Moscow Region, Russia <br> 2. Moscow State University, Moscow, Russia <br>
  • ISSN:1573-8876
文摘
We consider the one-parameter family of systems $$x' = F(x,\lambda ), x \in \mathbb{R}^n , 0 \leqslant \lambda \leqslant 1,$$ where F: ?sup class="a-plus-plus"> n × [0, 1] ??sup class="a-plus-plus"> n is a continuous vector field. The solution x(t) = φ(t, y, λ) is uniquely determined by the initial condition x(0) = y = φ(0, y, λ) and can be continued to the whole axis (?∞, +? for all λ ?[0, 1]. We obtain conditions ensuring the preservation of the property of global asymptotic stability of the stationary solution of such a system as the parameter λ varies.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700