Two-body equilibrium configurations involving one extreme black hole: the electrovacuum case
详细信息    查看全文
  • 作者:I. Cabrera-Munguia (1) cabrera@zarm.uni-bremen.de <br>V. S. Manko (2) vsmanko@fis.cinvestav.mx <br>E. Ruiz (3) eruiz@usal.es <br>M. B. Sadovnikova (4)
  • 关键词:Generating techniques – Ernst potentials – Extreme black hole
  • 刊名:General Relativity and Gravitation
  • 出版年:2012
  • 出版时间:September 2012
  • 年:2012
  • 卷:44
  • 期:9
  • 页码:2373-2386
  • 全文大小:229.8 KB
  • 参考文献:1. Manko V.S., Ruiz E., Sanabria-Gómez J.D.: Extended multi-soliton solutions of the Einstein field equation: II. Two comments on the existence of equilibrium states. Class. Quantum Gravit. 17, 3881–3898 (2000) <br>2. Sibgatullin, N.R.: Oscillations and Waves in Strong Gravitational and Electromagnetic Fields (Nauka, Moscow, 1984); (English translation: Springer, Berlin, 1991) <br>3. Manko V.S., Sibgatullin N.R.: Construction of exact solutions of the Einstein-Maxwell equations corresponding to a given behaviour of the Ernst potentials on the symmetry axis. Class. Quantum Gravit. 10, 1383–1404 (1993) <br>4. Rueda J.A., Manko V.S., Ruiz E., Sanabria-Gómez J.D.: The double-Kerr equilibrium configurations involving one extreme object. Class. Quantum Gravit. 22, 4887–4894 (2005) <br>5. Hennig J., Neugebauer G.: Non-existence of stationary two-black-hole configurations: the degenerate case. Gen. Relativ. Gravit. 43, 3139–3162 (2011) <br>6. Bretón N., Manko V.S., Aguilar-Sánchez J.: On the equilibrium of charged masses in general relativity: the electrostatic case. Class. Quantum Gravit. 15, 3071–3083 (1998) <br>7. Manko V.S.: Double-Reissner-Nordstr?m solution and the interaction force between two spherical charged masses in general relativity. Phys. Rev. D 76, 124032 (2007) <br>8. Bonnor W.B.: Static magnetic fields in general relativity. Proc. Phys. Soc. Lond. A 67, 225–232 (1954) <br>9. Melvin M.A.: Pure magnetic and electric geons. Phys. Lett. 8, 65–68 (1964) <br>10. Harrison B.K.: New solutions from the Einstein-Maxwell equations from old. J. Math. Phys. 9, 1744–1752 (1968) <br>11. Emparan R., Teo E.: Macroscopic and microscopic description of black diholes. Nucl. Phys. B 610, 190–214 (2001) <br>12. Newman E., Couch. E., Chinnapared K., Exton A., Prakash A., Torrence R.: Metric of a rotating charged mass. J. Math. Phys. 6, 918–919 (1965) <br>13. Newman E., Tamburino L., Unti T.: Empty-space generalization of the Schwarzschild metric. J. Math. Phys. 4, 915–923 (1963) <br>14. Ernst F.J.: New formulation of the axially symmetric gravitational field problem. II. Phys. Rev. 168, 1415–1417 (1968) <br>15. Neugebauer G., Meinel R.: Progress in relativistic gravitational theory using the inverse scattering method. J. Math. Phys. 44, 3407–3429 (2003) <br>16. Varzugin G.G., Chistyakov A.S.: Charged rotating black holes in equilibrium. Class. Quantun Gravit. 19, 4553–4564 (2002) <br>17. Komar A.: Covariant conservation laws in general relativity. Phys. Rev. 113, 934–936 (1959) <br>18. Sod-Hoffs J., Rodchenko E.D.: On the properties of the Ernst-Manko-Ruiz equatorially antisymmetric solutions. Class. Quantum Gravit. 24, 4617–4629 (2007) <br>19. Manko, V.S.: Singularity in Kerr–Newman spacetimes endowed with negative mass (arXiv:1110.6764[gr-qc]) <br>20. Amsel A.J., Horowitz G.T., Marolf D., Roberts M.M.: Uniqueness of extremal Kerr and Kerr–Newman black holes. Phys. Rev. D 81, 024033 (2010) <br>21. Meinel R.: Constructive proof of the KerrNewman black hole uniqueness including the extreme case. Class. Quantum Gravit. 29, 035004 (2012) <br>22. Carter B.: Global structure of the Kerr family of gravitational fields. Phys. Rev. 174, 1559–1571 (1968) <br>23. Jacobson T., Sotiriou T.P.: Overspinning a black hole with a test body. Phys. Rev. Lett. 103, 141101 (2009) <br>24. Israel W.: Line sources in general relativity. Phys. Rev. D 15, 935–941 (1977) <br>25. Weinstein G.: On rotating black holes in equilibrium in general relativity. Commun. Pure Appl. Math. 43, 903–948 (1990) <br>26. Majumdar S.M.: A class of solutions of Einstein’s field equations. Phys. Rev. 72, 390–398 (1947) <br>27. Papapetrou A.: A static solution of the equations of the gravitational field for an arbitrary charge distribution. Proc. R. Irish Acad. 51, 191–204 (1947) <br>28. Bonnor W.B.: The equilibrium of a charged test particle in the field of a spherical charged mass in general relativity. Class. Quantum Gravit. 10, 2077–2082 (1993) <br>29. Perry G.P., Cooperstock F.I.: Electrostatic equilibrium of two spherical charged masses in general relativity. Class. Quantum Gravit. 14, 1329–1345 (1997) <br>30. Manko V.S., Ruiz E., Sánchez-Mondragón J.: Analogs of the double-Reissner-Nordstr?m solution in magnetostatics and dilaton gravity: mathematical description and basic physical properties. Phys. Rev. D 79, 084024 (2009) <br>31. Emparan R.: Black diholes. Phys. Rev. D 61, 104009 (2000) <br>32. Liang Y.C., Teo E.: Black diholes with unbalanced magnetic charges. Phys. Rev. D 64, 024019 (2001)
  • 作者单位:1. ZARM, Universit?t Bremen, Am Fallturm, 28359 Bremen, Germany2. Departamento de Física, Centro de Investigación y de Estudios Avanzados del IPN, A.P. 14-740, 07000 México, D.F., Mexico3. Instituto Universitario de Física Fundamental y Matemáticas, Universidad de Salamanca, 37008 Salamanca, Spain4. Department of Quantum Statistics and Field Theory, Lomonosov Moscow State University, 119899 Moscow, Russia
  • ISSN:1572-9532
文摘
The present paper fills in the final gap in the search and description of different equilibrium states in the two-body systems consisting of one extreme and one non-extreme components. In the ‘extreme-non-extreme’ case of charged spinning masses we obtain, by making use of an appropriate exact solution of the Einstein-Maxwell equations and solving numerically the corresponding balance equations, the first examples of the ‘extreme-hyperextreme’ equilibrium configurations characterized by positive Komar masses of both Kerr–Newman constituents. Furthermore, we demonstrate that equilibrium in the ‘extreme-subextreme’ stationary electrovac systems is also possible, but all particular equilibrium configurations of this type found by us involve negative mass of one of the constituents. In the electrostatic case which admits a purely analytic treatment we give a rigorous proof of the non-existence of the ‘extreme-non-extreme’ equilibrium configurations in the framework of the double-Reissner–Nordstr?m solution. At the same time, the electrostatic equilibrium between an extreme and a subextreme black holes can be achieved in the uniform external field, provided the two constituents form a specific dihole with zero net charge.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700