Hydrogen peroxide induced by the fungicide prothioconazole triggers deoxynivalenol (DON) production by Fusarium graminearum
详细信息    查看全文
  • 作者:Kris Audenaert (1) (2)
    Elien Callewaert (1)
    Monica H?fte (2)
    Sarah De Saeger (3)
    Geert Haesaert (1) (2)
  • 刊名:BMC Microbiology
  • 出版年:2010
  • 出版时间:December 2010
  • 年:2010
  • 卷:10
  • 期:1
  • 全文大小:1406KB
  • 参考文献:1. Goswami RS, Kistler HC: Heading for disaster: Fusarium graminearum on cereal crops. / Molecular Plant Pathology 2004,5(6):515-25. CrossRef
    2. Bottalico A, Perrone G: Toxigenic Fusarium species and mycotoxins associated with head blight in small-grain cereals in Europe. / European Journal of Plant Pathology 2002,108(7):611-24. CrossRef
    3. Desjardins AE: Gibberella from A (venaceae) to Z (eae). / Annual Review of Phytopathology 2003, 41:177-98. CrossRef
    4. Bai GH, Desjardins AE, Plattner RD: Deoxynivalenol-nonproducing Fusarium graminearum causes initial infection, but does not cause disease spread in wheat spikes. / Mycopathologia 2002,153(2):91-8. CrossRef
    5. Desmond OJ, Manners JM, Stephens AE, MaClean DJ, Schenk PM, Gardiner DM, Munn AL, Kazan K: The Fusarium mycotoxin deoxynivalenol elicits hydrogen peroxide production, programmed cell death and defence responses in wheat. / Molecular Plant Pathology 2008,9(4):435-45. CrossRef
    6. Mudge AM, Dill-Macky R, Dong YH, Gardiner DM, White RG, Manners JM: A role for the mycotoxin deoxynivalenol in stem colonisation during crown rot disease of wheat caused by Fusarium graminearum and Fusarium pseudograminearum . / Physiological and Molecular Plant Pathology 2006,69(1-):73-5. CrossRef
    7. Hestbjerg H, Felding G, Elmholt S: Fusarium culmorum infection of barley seedlings: Correlation between aggressiveness and deoxynivalenol content. / Journal of Phytopathology-Phytopathologische Zeitschrift 2002,150(6):308-12. CrossRef
    8. Goswami RS, Kistler HC: Pathogenicity and in planta mycotoxin accumulation among members of the Fusarium graminearum species complex on wheat and rice. / Phytopathology 2005,95(12):1397-404. CrossRef
    9. Liu WZ, Langseth W, Skinnes H, Elen ON, Sundheim L: Comparison of visual head blight ratings, seed infection levels, and deoxynivalenol production for assessment of resistance in cereals inoculated with Fusarium culmorum . / European Journal of Plant Pathology 1997,103(7):589-95. CrossRef
    10. Adams GC, Hart LP: The role of deoxynivalenol and 15-acetyldeoxynivalenol in pathogenesis by Gibberella zeae as elucidated through protoplast fusions between toxigenic and non-toxigenic strains. / Phytopathology 1989,79(4):404-08. CrossRef
    11. Walker SL, Leath S, Hagler WM, Murphy JP: Variation among isolates of Fusarium graminearum associated with Fusarium head blight in North Carolina. / Plant Disease 2001,85(4):404-10. CrossRef
    12. Simpson DR, Thomsett MA, Nicholson P: Competitive interactions between Microdochium nivale var. majus, M-nivale var. nivale and Fusarium culmorum in planta and in vitro . / Environmental Microbiology 2004,6(1):79-7. CrossRef
    13. Schmidt-Heydt M, Magan N, Geisen R: Stress induction of mycotoxin biosynthesis genes by abiotic factors. / Fems Microbiology Letters 2008,284(2):142-49. CrossRef
    14. Gardiner DM, Kazan K, Manners JM: Nutrient profiling reveals potent inducers of trichothecene biosynthesis in Fusarium graminearum . / Fungal Genetics and Biology 2009,46(8):604-13. CrossRef
    15. Gardiner DM, Osborne S, Kazan K, Manners JM: Low pH regulates the production of deoxynivalenol by Fusarium graminearum . / Microbiology-SGM 155(9):3149-156.
    16. Magan N, Hope R, Colleate A, Baxter ES: Relationship between growth and mycotoxin production by Fusarium species, biocides and environment. / European Journal of Plant Pathology 108(7):685-90.
    17. Ponts N, Pinson-Gadais L, Verdal-Bonnin MN, Barreau C, Richard-Forget F: Accumulation of deoxynivalenol and its 15-acetylated form is significantly modulated by oxidative stress in liquid cultures of Fusarium graminearum . / FEMS Microbiology Letters 2006,258(1):102-07. CrossRef
    18. Ochiai N, Tokai T, Takahashi-Ando N, Fujimura M, Kimura M: Genetically engineered Fusarium as a tool to evaluate the effects of environmental factors on initiation of trichothecene biosynthesis. / FEMS Microbiology Letters 2007,275(1):53-1. CrossRef
    19. Ponts N, Pinson-Gadais L, Barreau C, Richard-Forget F, Ouellet T: Exogenous H2O2 and catalase treatments interfere with Tri genes expression in liquid cultures of Fusarium graminearum . / FEBS Letters 2007,581(3):443-47. CrossRef
    20. Ponts N, Couedelo L, Pinson-Gadais L, Verdal-Bonnin MN, Barreau C, Richard-Forget F: Fusarium response to oxidative stress by H2O2 is trichothecene chemotype-dependent. / FEMS Microbiology Letters 2009,293(2):255-62. CrossRef
    21. Mullenborn C, Steiner U, Ludwig M, Oerke EC: Effect of fungicides on the complex of Fusarium species and saprophytic fungi colonizing wheat kernels. / European Journal of Plant Pathology 2008,120(2):157-66. CrossRef
    22. Ochiai N, Tokai T, Takahashi-Ando N, Fujimura M, Kimura M: Genetically engineered Fusarium as a tool to evaluate the effects of environmental factors on initiation of trichothecene biosynthesis. / FEMS Microbiology Letters 275(1):53-1.
    23. D'Mello JPF, Macdonald AMC, Postel D, Dijksma WTP, Dujardin A, Placinta CM: Pesticide use and mycotoxin production in Fusarium and Aspergillus phytopathogens. / European Journal of Plant Pathology 104(8):741-51.
    24. Covarelli L, Turner AS, Nicholson P: Repression of deoxynivalenol accumulation and expression of Tri genes in Fusarium culmorum by fungicides in vitro . / Plant Pathology 2004,53(1):22-8. CrossRef
    25. Matthies A, Buchenauer H: Effect of tebuconazole (Folicur (R)) and prochloraz (Sportak (R)) treatments on Fusarium head scab development, yield and deoxynivalenol (DON) content in grains of wheat following artificial inoculation with Fusarium culmorum . / Zeitschrift für Pflanzenkrankheiten und Pflanzenschutz/Journal of Plant diseases and Protection 107(1):33-2.
    26. Kim YS, Dixon EW, Vincelli P, Farman ML: Field resistance to strobilurin (Q(o)I) fungicides in Pyricularia grisea caused by mutations in the mitochondrial cytochrome b gene. / Phytopathology 2003,93(7):891-00. CrossRef
    27. Fisher N, Brown AC, Sexton G, Cook A, Windass J, Meunier B: Modeling the Q(o) site of crop pathogens in Saccharomyces cerevisiae cytochrome b. / European Journal of Biochemistry 2004,271(11):2264-271. CrossRef
    28. Fraaije BA, Butters JA, Coelho JM, Jones DR, Hollomon DW: Following the dynamics of strobilurin resistance in Blumeria graminis f.sp tritici using quantitative allele-specific real-time PCR measurements with the fluorescent dye SYBR Green I. / Plant Pathology 2002,51(1):45-4. CrossRef
    29. Kaneko I, Ishii H: Effect of azoxystrobin on activities of antioxidant enzymes and alternative oxidase in wheat head blight pathogens Fusarium graminearum and Microdochium nivale . / Journal of General Plant Pathology 2009,75(5):388-98. CrossRef
    30. Levine A, Tenhaken R, Dixon R, Lamb C: H 2 O 2 from the oxidative burst orchestrates the plant hypersensitive disease resistance response. / Cell 1994,79(4):583-93. CrossRef
    31. Seong KY, Zhao X, Xu JR, Guldener U, Kistler HC: Conidial germination in the filamentous fungus Fusarium graminearum . / Fungal Genetics and Biology 2008,45(4):389-99. CrossRef
    32. Aguirre J, Rios-Momberg M, Hewitt D, Hansberg W: Reactive oxygen species and development in microbial eukaryotes. / Trends in Microbiology 2005,13(3):111-18. CrossRef
    33. Hansberg W, Aguirre J: Hyperoxidant states cause microbial cell-differentiation by cell isolation from dioxygen. / Journal of Theorethical Biology 1990,142(2):201-21. CrossRef
    34. Cano-Dominguez N, Alvarez-Delfin K, Hansberg W, Aguirre J: NADPH oxidases NOX-1 and NOX-2 require the regulatory subunit NOR-1 to control cell differentiation and growth in Neurospora crassa . / Eukaryotic Cell 2008,7(8):1352-361. CrossRef
    35. Branco MR, Marinho HS, Cyrne L, Antunes F: Decrease of H 2 O 2 plasma membrane permeability during adaptation to H 2 O 2 in Saccharomyces cerevisiae . / Journal of Biological Chemistry 2004,279(8):6501-506. CrossRef
    36. Sousa-Lopes A, Antunes F, Cyrne L, Marinho HS: Decreased cellular permeability to H 2 O 2 protects Saccharomyces cerevisiae cells in stationary phase against oxidative stress. / FEBS Letters 2004,578(1-):152-56. CrossRef
    37. Shimokawa O, Nakayama H: Increased sensitivity of Candida albicans cells accumulating 14-alpha-methylated sterols to active oxygen: Possible relevance to in vivo efficacies of azole antifungal agents. / Antimicrobial Agents and Chemotherapy 1992,36(8):1626-629.
    38. Folmer V, Pedroso N, Matias AC, Lopes S, Antunes F, Cyrne L, Marinho HS: H2O2 induces rapid biophysical and permeability changes in the plasma membrane of Saccharomyces cerevisiae . / Biochimica Biophysica Acta-Biomembr 2008,1778(4):1141-147. CrossRef
    39. Wu YX, von Tiedemann A: Impact of fungicides on active oxygen species and antioxidant enzymes in spring barley ( Hordeum vulgare L.) exposed to ozone. / Environmental Pollution 2002,116(1):37-7. CrossRef
    40. Wu YX, von Tiedemann A: Physiological effects of azoxystrobin and epoxiconazole on senescence and the oxidative status of wheat. / Pesticide Biochemistry and Physiology 2001,71(1):1-0. CrossRef
    41. Jansen C, von Wettstein D, Schafer W, Kogel KH, Felk A, Maier FJ: Infection patterns in barley and wheat spikes inoculated with wild-type and trichodiene synthase gene disrupted Fusarium graminearum . / Proceedings of the National Academy of Sciences of the United States of America 2005,102(46):16892-6897. CrossRef
    42. Audenaert K, Van Broeck R, Bekaert B, De Witte F, Heremans B, Messens K, Hofte M, Haesaert G: Fusarium head blight (FHB) in Flanders: population diversity, inter-species associations and DON contamination in commercial winter wheat varieties. / European Journal of Plant Pathology 2009,125(3):445-58. CrossRef
    43. Saghaimaroof MA, Soliman KM, Jorgensen RA, Allard RW: Ribosomal DNA spacer-length polymorphisms in barley: Mendelian inheritance, chromosomal location and population dynamics. / Proceedings of the National Academy of Sciences of the United States of America-Biological Sciences 1984,81(24):8014-018. CrossRef
    44. Nicolaisen M, Supronien S, Nielsen LK, Lazzaro I, Spliid NH, Justesen AF: Real-time PCR for quantification of eleven individual Fusarium species in cereals. / Journal of Microbiological Methods 2009,76(3):234-40. CrossRef
  • 作者单位:Kris Audenaert (1) (2)
    Elien Callewaert (1)
    Monica H?fte (2)
    Sarah De Saeger (3)
    Geert Haesaert (1) (2)

    1. Department Biosciences and Landscape Architecture, Ghent University College/Ghent University Association, Schoonmeersstraat 52, B-9000, Gent, Belgium
    2. Laboratory of Phytopathology, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, B-9000, Gent, Belgium
    3. Laboratory of Food Analysis, Faculty of Pharmaceutical Sciences, Ghent University, Harelbekestraat 72, B-9000, Gent, Belgium
  • ISSN:1471-2180
文摘
Background Fusarium head blight is a very important disease of small grain cereals with F. graminearum as one of the most important causal agents. It not only causes reduction in yield and quality but from a human and animal healthcare point of view, it produces mycotoxins such as deoxynivalenol (DON) which can accumulate to toxic levels. Little is known about external triggers influencing DON production. Results In the present work, a combined in vivo/in vitro approach was used to test the effect of sub lethal fungicide treatments on DON production. Using a dilution series of prothioconazole, azoxystrobin and prothioconazole + fluoxastrobin, we demonstrated that sub lethal doses of prothioconazole coincide with an increase in DON production 48 h after fungicide treatment. In an artificial infection trial using wheat plants, the in vitro results of increased DON levels upon sub lethal prothioconazole application were confirmed illustrating the significance of these results from a practical point of view. In addition, further in vitro experiments revealed a timely hyperinduction of H2O2 production as fast as 4 h after amending cultures with prothioconazole. When applying H2O2 directly to germinating conidia, a similar induction of DON-production by F. graminearum was observed. The effect of sub lethal prothioconazole concentrations on DON production completely disappeared when applying catalase together with the fungicide. Conclusions These cumulative results suggest that H2O2 induced by sub lethal doses of the triazole fungicide prothioconazole acts as a trigger of DON biosynthesis. In a broader framework, this work clearly shows that DON production by the plant pathogen F. graminearum is the result of the interaction of fungal genomics and external environmental triggers.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700