Changes in var gene mRNA levels during erythrocytic development in two phenotypically distinct Plasmodium falciparum parasites
详细信息    查看全文
  • 作者:Madeleine Dahlb?ck (1)
    Thomas Lavstsen (1)
    Ali Salanti (1)
    Lars Hviid (1)
    David E Arnot (1) (2)
    Thor G Theander (1)
    Morten A Nielsen (1)
  • 刊名:Malaria Journal
  • 出版年:2007
  • 出版时间:December 2007
  • 年:2007
  • 卷:6
  • 期:1
  • 全文大小:1419KB
  • 参考文献:1. David PH, Hommel M, Miller LH, Udeinya IJ, Oligino LD: Parasite sequestration in Plasmodium falciparum malaria: spleen and antibody modulation of cytoadherence of infected erythrocytes. / Proc Natl Acad Sci USA 1983, 80: 5075-079. CrossRef
    2. Howard RJ, Barnwell JW: Roles of surface antigens on malaria-infected red blood cells in evasion of immunity. / Contemp Top Immunobiol 1984, 12: 127-00.
    3. Ockenhouse CF, Tandon NN, Magowan C, Jamieson GA, Chulay JD: Identification of a platelet membrane glycoprotein as a falciparum malaria sequestration receptor. / Science 1989, 243: 1469-471. CrossRef
    4. Roberts DD, Sherwood JA, Spitalnik SL, Panton LJ, Howard RJ, Dixit VM, Frazier WA, Miller LH, Ginsburg V: Thrombospondin binds falciparum malaria parasitized erythrocytes and may mediate cytoadherence. / Nature 1985, 318: 64-6. CrossRef
    5. Berendt AR, Simmons DL, Tansey J, Newbold CI, Marsh K: Intercellular adhesion molecule-1 is an endothelial cell adhesion receptor for Plasmodium falciparum . / Nature 1989, 341: 57-9. CrossRef
    6. Fried M, Duffy PE: Adherence of Plasmodium falciparum to chondroitin sulfate A in the human placenta. / Science 1996, 272: 1502-504. CrossRef
    7. Baruch DI, Pasloske BL, Singh HB, Bi XH, Ma XC, Feldman M, Taraschi TF, Howard RJ: Cloning the Plasmodium falciparum gene encoding PfEMP1, a malarial variant antigen and adherence receptor on the surface of parasitized human erythrocytes. / Cell 1995, 82: 77-7. CrossRef
    8. Su XZ, Heatwole VM, Wertheimer SP, Guinet F, Herrfeldt JA, Peterson DS, Ravetch JA, Wellems TE: The large diverse gene family var encodes proteins involved in cytoadherence and antigenic variation of Plasmodium falciparum -infected erythrocytes. / Cell 1995, 82: 89-00. CrossRef
    9. Smith JD, Chitnis CE, Craig AG, Roberts DJ, Hudson-Taylor DE, Peterson DS, Pinches R, Newbold CI, Miller LH: Switches in expression of Plasmodium falciparum var genes correlate with changes in antigenic and cytoadherent phenotypes of infected erythrocytes. / Cell 1995, 82: 101-10. CrossRef
    10. Gardner MJ, Hall N, Fung E, White O, Berriman M, Hyman RW, Carlton JM, Pain A, Nelson KE, Bowman S, Paulsen IT, James K, Eisen JA, Rutherford K, Salzberg SL, Craig A, Kyes S, Chan MS, Nene V, Shallom SJ, Suh B, Peterson J, Angiuoli S, Pertea M, Allen J, Selengut J, Haft D, Mather MW, Vaidya AB, Martin DMA, Fairlamb AH, Fraunholz MJ, Roos DS, Ralph SA, McFadden GI, Cummings LM, Subramanian GM, Mungall C, Venter JC, Carucci DJ, Hoffman SL, Newbold C, Davis RW, Fraser CM, Barrell B: Genome sequence of the human malaria parasite Plasmodium falciparum . / Nature 2002, 419: 498-11. CrossRef
    11. Lavstsen T, Salanti A, Jensen ATR, Arnot DE, Theander TG: Sub-grouping of Plasmodium falciparum 3D7 var genes based on sequence analysis of coding and non-coding regions. / Malaria Journal 2003, 2: 27. CrossRef
    12. Kraemer SM, Smith JD: Evidence for the importance of genetic structuring to the structural and functional specialization of the Plasmodium falciparum var gene family. / Mol Microbiol 2003, 50: 1527-538. CrossRef
    13. Marsh K, Otoo L, Hayes RJ, Carson DC, Greenwood BM: Antibodies to blood stage antigens of Plasmodium falciparum in rural Gambians and their relation to protection against infection. / Trans R Soc Trop Med Hyg 1989, 83: 293-03. CrossRef
    14. Bull PC, Lowe BS, Kortok M, Molyneux CS, Newbold CI, Marsh K: Parasite antigens on the infected red cell surface are targets for naturally acquired immunity to malaria. / Nat Med 1998, 4: 358-60. CrossRef
    15. Ofori MF, Dodoo D, Staalsoe T, Kurtzhals JAL, Koram K, Theander TG, Akanmori BD, Hviid L: Malaria-induced acquisition of antibodies to Plasmodium falciparum variant surface antigens. / Infect Immun 2002, 70: 2982-988. CrossRef
    16. Duffy PE, Fried M: Antibodies that inhibit Plasmodium falciparum adhesion to chondroitin sulfate A are associated with increased birth weight and the gestational age of Newborns. / Infect Immun 2003, 71: 6620-623. CrossRef
    17. Staalsoe T, Shulman CE, Bulmer JN, Kawuondo K, Marsh K, Hviid L: Variant surface antigen-specific IgG and protection against clinical consequences of pregnancy-associated Plasmodium falciparum malaria. / Lancet 2004, 363: 283-89. CrossRef
    18. Salanti A, Staalsoe T, Lavstsen T, Jensen ATR, Sowa MPK, Arnot DE, Hviid L, Theander TG: Selective upregulation of a single distinctly structured var gene in chondroitin sulphate A-adhering Plasmodium falciparum involved in pregnancy-associated malaria. / Mol Microbiol 2003, 49: 179-91. CrossRef
    19. Salanti A, Dahlback M, Turner L, Nielsen MA, Barfod L, Magistrado P, Jensen ATR, Lavstsen T, Ofori MF, Marsh K, Hviid L, Theander TG: Evidence for the involvement of VAR2CSA in pregnancy-associated malaria. / J Exp Med 2004, 200: 1197-203. CrossRef
    20. Jensen ATR, Magistrado P, Sharp S, Joergensen L, Lavstsen T, Chiucciuini A, Salanti A, Vestergaard LS, Lusingu JP, Hermsen R, Sauerwein R, Christensen J, Nielsen MA, Hviid L, Sutherland C, Staalsoe T, Theander TG: Plasmodium falciparum associated with severe childhood malaria preferentially expresses PfEMP1 encoded by group A var genes. / Journal of Experimental Medicine 2004, 199: 1179-190. CrossRef
    21. Magistrado PA, Lusingu J, Vestergaard LS, Lemnge M, Lavstsen T, Turner L, Hviid L, Jensen AT, Theander TG: IgG antibody reactivity to a Group A PfEMP1 and protection from Plasmodium falciparum malaria. / Infect Immun 2007, 75: 2415-420. CrossRef
    22. Scherf A, Hernandez-Rivas R, Buffet P, Bottius E, Benatar C, Pouvelle B, Gysin J, Lanzer M: Antigenic variation in malaria: in situ switching, relaxed and mutually exclusive transcription of var genes during intra-erythrocytic development in Plasmodium falciparum . / EMBO J 1998, 17: 5418-426. CrossRef
    23. Chen QJ, Fernandez V, Sundstrom A, Schlichtherle M, Datta S, Hagblom P, Wahlgren M: Developmental selection of var gene expression in Plasmodium falciparum . / Nature 1998, 394: 392-95. CrossRef
    24. Kyes S, Pinches R, Newbold C: A simple RNA analysismethod shows var and rif multigene family expression patterns in Plasmodium falciparum . / Mol Biochem Parasitol 2000, 105: 311-15. CrossRef
    25. Kyes SA, Christodoulou Z, Raza A, Horrocks P, Pinches R, Rowe JA, Newbold CI: A well-conserved Plasmodium falciparum var gene shows an unusual stage-specific transcript pattern. / Mol Microbiol 2003, 48: 1339-348. CrossRef
    26. Noviyanti R, Brown GV, Wickham ME, Duffy MF, Cowman AF, Reeder JC: Multiple var gene transcripts are expressed in Plasmodium falciparum infected erythrocytes selected for adhesion. / Mol Biochem Parasitol 2001, 114: 227-37. CrossRef
    27. Duffy MF, Brown GV, Basuki W, Krejany EO, Noviyanti R, Cowman AF, Reeder JC: Transcription of multiple var genes by individual, trophozoite-stage Plasmodium falciparum cells expressing a chondroitin sulphate A binding phenotype. / Mol Microbiol 2002, 43: 1285-293. CrossRef
    28. Trager W, Jensen JB: Human malaria parasites in continuous culture. / Science 1976, 193: 673-75. CrossRef
    29. Staalsoe T, Giha HA, Dodoo D, Theander TG, Hviid L: Detection of antibodies to variant antigens on Plasmodium falciparum -infected erythrocytes by flow cytometry. / Cytometry 1999, 35: 329-36. CrossRef
    30. Ricke CH, Staalsoe T, Koram K, Akanmori BD, Riley EM, Theander TG, Hviid L: Plasma antibodies from malaria-exposed pregnant women recognize variant surface antigens on Plasmodium falciparum -infected erythrocytes in a parity-dependent manner and block parasite adhesion to chondroitin sulfate A. / J Immunol 2000, 165: 3309-316.
    31. Paul F, Roath S, Melville D, Warhurst DC, Osisanya JO: Separation of malaria-infected erythrocytes from whole blood: use of a selective high-gradient magnetic separation technique. / Lancet 1981, 2: 70-1. CrossRef
    32. PlasmoDB -The Plasmodium Genome Resource [http://www.plasmodb.org]
    33. Dzikowski R, Frank M, Deitsch K: Mutually exclusive expression of virulence genes by malaria parasites is regulated independently of antigen production. / PLoS Pathog 2006, 2: e22. CrossRef
    34. Voss TS, Healer J, Marty AJ, Duffy MF, Thompson JK, Beeson JG, Reeder JC, Crabb BS, Cowman AF: A var gene promoter controls allelic exclusion of virulence genes in Plasmodium falciparum malaria. / Nature 2006, 439: 1004-008.
    35. Dembo EG, Phiri HT, Montgomery J, Molyneux ME, Rogerson SJ: Are Plasmodium falciparum parasites present in peripheral blood genetically the same as those sequestered in the tissues? / Am J Trop Med Hyg 2006, 74: 730-32.
    36. Taylor HM, Kyes SA, Harris D, Kriek N, Newbold CI: A study of var gene transcription in vitro using universal var gene primers. / Mol Biochem Parasitol 2000, 105: 13-3. CrossRef
    37. Kyes S, Christodoulou Z, Pinches R, Kriek N, Horrocks P, Newbold C: Plasmodium falciparum var gene expression is developmentally controlled at the level of RNA polymerase II-mediated transcription initiation. / Mol Microbiol 2007, 63: 1237-247. CrossRef
    38. Duffy MF, Byrne TJ, Elliott SR, Wilson DW, Rogerson SJ, Beeson JG, Noviyanti R, Brown GV: Broad analysis reveals a consistent pattern of var gene transcription in Plasmodium falciparum repeatedly selected for a defined adhesion phenotype. / Mol Microbiol 2005, 56: 774-88. CrossRef
    39. Duraisingh MT, Voss TS, Marty AJ, Duffy MF, Good RT, Thompson JK, Freitas-Junior LH, Scherf A, Crabb BS, Cowman AF: Heterochromatin silencing and locus repositioning linked to regulation of virulence genes in Plasmodium faiciparum . / Cell 2005, 121: 13-4. CrossRef
    40. Ralph SA, Scheidig-Benatar C, Scherf A: Antigenic variation in Plasmodium falciparum is associated with movement of var loci between subnuclear locations. / Proc Natl Acad Sci USA 2005, 102: 5414-419. CrossRef
    41. Voss TS, Kaestli M, Vogel D, Bopp S, Beck HP: Identification of nuclear proteins that interact differentially with Plasmodium falciparum var gene promoters. / Mol Microbiol 2003, 48: 1593-607. CrossRef
    42. Winter G, Chen QJ, Flick K, Kremsner P, Fernandez V, Wahlgren M: The 3D7var5.2 ( var COMMON) type var gene family is commonly expressed in non-placental Plasmodium falciparum malaria. / Mol Biochem Parasitol 2003, 127: 179-91. CrossRef
    43. Gannoun-Zaki L, Jost A, Mu JB, Deitsch KW, Wellems TE: A silenced Plasmodium falciparum var promoter can be activated in vivo through spontaneous deletion of a silencing element in the intron. / Eukaryot Cell 2005, 4: 490-92. CrossRef
    44. Frank M, Dzikowski R, Costantini D, Amulic B, Berdougo E, Deitsch K: Strict pairing of var promoters and introns is required for var gene silencing in the malaria parasite Plasmodium falciparum . / J Biol Chem 2006, 281: 9942-952. CrossRef
    45. Gardner JP, Pinches RA, Roberts DJ, Newbold CI: Variantantigens and endothelial receptor adhesion in Plasmodium falciparum . / Proc Natl Acad Sci USA 1996, 93: 3503-508. CrossRef
    46. Waterkeyn JG, Wickham ME, Davern KM, Cooke BM, Coppel RL, Reeder JC, Culvenor JG, Waller RF, Cowman AF: Targeted mutagenesis of Plasmodium falciparum erythrocyte membrane protein 3 (PfEMP3) disrupts cytoadherence of malaria-infected red blood cells. / EMBO J 2000, 19: 2813-823. CrossRef
    47. Kriek N, Tilley L, Horrocks P, Pinches R, Elford BC, Ferguson DJP, Lingelbach K, Newbold CI: Characterization of the pathway for transport of the cytoadherence-mediating protein, PfEMP1, to the host cell surface in malaria parasite-infected erythrocytes. / Mol Microbiol 2003, 50: 1215-227. CrossRef
  • 作者单位:Madeleine Dahlb?ck (1)
    Thomas Lavstsen (1)
    Ali Salanti (1)
    Lars Hviid (1)
    David E Arnot (1) (2)
    Thor G Theander (1)
    Morten A Nielsen (1)

    1. Centre for Medical Parasitology at Department of International Health, Immunology and Microbiology, University of Copenhagen and Department of Infectious Diseases, Copenhagen University Hospital (Rigshospitalet), Copenhagen, Denmark
    2. Institute of Immunology and Infection Research, School of Biological Sciences, University of Edinburgh, Scotland, UK
文摘
Background The var multigene family encodes PfEMP1, which are expressed on the surface of infected erythrocytes and bind to various host endothelial receptors. Antigenic variation of PfEMP1 plays a key role in malaria pathogenesis, a process partially controlled at the level of var gene transcription. Transcriptional levels, throughout the intra-erythrocytic cycle, of 59 var genes of the NF54 clone were measured simultaneously by quantitative real-time PCR. The timing of var transcript abundance, the number of genes transcribed and whether transcripts were correctly spliced for protein expression were determined. Two parasite populations were studied; an unselected population of NF54 and a selected population, NF54VAR2CSA, to compare both the transcription of var2csa and the expression pattern of the corresponding protein. Methods Synchronized parasites were harvested at different time points along the 48 hours intra-erythrocytic cycle for extraction of RNA and for analysis of expression of variant surface antigens by flow cytometry. Total RNA from each parasite sample was extracted and cDNA synthesized. Quantitative real-time PCR was performed using gene-specific primers for all var genes. Samples for flow cytometry were labelled with rabbit IgG targeting DBL5ε of VAR2CSA and serum IgG from malaria-exposed men and pregnant women. Results var transcripts were detected at all time points of the intra-erythrocytic cycle by quantitative real-time PCR, although transcription peaked in ring-stage parasites. There was no difference in the timing of appearance of group A, B or C transcripts, and dominant and subdominant var transcripts appeared to be correctly spliced at all time points. VAR2CSA appeared on the surface of infected erythrocytes 16 hours after invasion, consistent with previous studies of other PfEMP1. Transcription of the pseudogene var1csa could not be detected in NF54VAR2CSA cells. Conclusion The optimal sampling point for analysis of var transcripts using quantitative real-time PCR is the ring-stage, which is encouraging for the analysis of fresh clinical isolates. The data presented here indicate that there is no promiscuous transcription of var genes at the individual cell level and that it is possible to correlate dominant transcripts with adhesion phenotype and clinical markers of malaria severity.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700