Microwave Assisted Synthesis, Spectrofluorometric Characterization of Azomethine as Intermediate for Transition Metal Complexes with Biological Application
详细信息    查看全文
  • 作者:Mohie E. M. Zayed ; Abdullah M. Asiri ; Salman A Khan
  • 刊名:Journal of Fluorescence
  • 出版年:2016
  • 出版时间:May 2016
  • 年:2016
  • 卷:26
  • 期:3
  • 页码:937-947
  • 全文大小:879 KB
  • 刊物类别:Biomedical and Life Sciences
  • 刊物主题:Biomedicine
    Biomedicine
    Biophysics and Biomedical Physics
    Biotechnology
    Biochemistry
    Analytical Chemistry
  • 出版者:Springer Netherlands
  • ISSN:1573-4994
  • 卷排序:26
文摘
Azomethine (1, 5 - Dimethyl - 2 - phenyl -[(3, 4, 5 -trimethoxybenzylidene) amino] -1, 2 - dihydropyrazol - 3 - one) (DTAD) was synthesized by the reaction of 4-aminophenazone with 3,4,5 trimrthoxybenzaldehyd by microwave irradiation. Physicochemical studies such as electronic absorption, molar absorptivity, oscillator strength, dipole moment, florescent quantum yield were investigated in order to explore the analytical potential of azomethine dye. Azomethine go through the solubilization in different micelles and may be used as a probe or quencher to determine the critical micelle concentration (CMC) of SDS and CTAB. It’s coordinate to metal salt through the pyrazol-3-one oxygen and the azomethine nitrogen. The structure of ligand and its meal complexes was elucidated by IR, 1H, 13C-NMR, EI-MS spectroscopic methods and elemental analysis. The antibacterial activity of these compounds were first tested in vitro by the disc diffusion assay against two Gram-positive and two Gram-negative bacteria, and then the minimum inhibitory concentration was using chloramphenicol as reference drug. The results showed that compound 1.1 is better inhibitor of both types of tested bacteria as compared to chloramphenicol.KeywordsAzomethinePhysicochemicalCMCMetal complexAntibacterial activityChloramphenicol

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700