Molecular imaging of paper cross sections by FT-IR spectroscopy and principal component analysis
详细信息    查看全文
  • 作者:S. Genest (1) (2)
    R. Salzer (3)
    G. Steiner (4)
  • 关键词:Fourier transform infrared imaging ; Paper cross section ; Wet strength ; Poly(amidoamine)–epichlorohydrin
  • 刊名:Analytical and Bioanalytical Chemistry
  • 出版年:2013
  • 出版时间:June 2013
  • 年:2013
  • 卷:405
  • 期:16
  • 页码:5421-5430
  • 全文大小:521KB
  • 参考文献:1. Eklund D, Lindstr?m T (1991) Paper chemistry -an introduction. DT Paper Science Publications, Grankulla
    2. Hamm U (2008) Wet strength resins in hygienic paper production. In: Zellcheming -Technical Committee CHAD (ed) Chemical additives for the production of pulp & paper, Fachbuchverlag, Frankfurt
    3. Jing S, Zhanqian S, Xueren Q, Yonghao N (2011) A review on use of fillers in cellulosic paper for functional applications. Ind Eng Chem Res 50(2):661-66 CrossRef
    4. Pikulik II (1997) Wet-web properties and their effect on picking and machine runnability. Pulp Pap Can 98(12):161-65
    5. Dunlop-Jones N (1996) Wet-strength chemistry. In: Roberts JC (ed) Paper chemistry, chap 7, 2nd edn. Chapman & Hall, London
    6. Horvath AT, Hiorvat AE, Lindstr?m T, W?gberg L (2008) Diffusion of cationic polyelectrolytes into cellulosic fibers. Langmuir 24(19):10797-0806 CrossRef
    7. W?gberg L (2000) Polyelectrolyte adsorption onto cellulose fibres - a review. Nord Pulp Pap Res J 15(5):586-98 CrossRef
    8. Espy HH (1995) The mechanism of wet-strength development in paper: a review. TAPPI J 78:90-9
    9. W?gberg L, Bj?rklund M (1993) On the mechanism behind wet strength development in papers containing wet strength resins. Nord Pulp Pap Res J 1(8):53-8 CrossRef
    10. Haggkvist M, Solberg D, W?gberg L, Odberg L (1998) The influence of two wet strength agents on pore size and swelling of pulp fibres and on tensile strength properties. Nord Pulp Pap Res J 13(4):292-98 CrossRef
    11. Ahola S, ?sterberg M, Laine J (2008) Cellulose nanofibrils adsorption with poly(amideamine) epichlorohydrin studied by QCM-D and application as a paper strength additive. Cellulose 15(2):303-14 CrossRef
    12. Odermatt J, Ringena O, Teucke R, Gerst M, Reiter C (2005) Quantification of styrene acrylate and urea formaldehyde resin, components of a foil impregnation resin, and polyvinyl acetate by Py-GC/MS. Appita J 58(6):462-69
    13. Odermatt J, Runge T, Meier D, Mauler D (1999) Analysis of paper additives by pyrolysis gas chromatography/mass spectrometry (Py-GC/MS). Papier 53(10A):25-8
    14. Odermatt J, Ringena O, Teucke R, Schmidt-Thummes J (2007) A new method for z-profile measurements of paper additives. Appita J 60(3):200-03
    15. Yang CQ, Xu Y, Wang D (1996) FT-IR spectroscopy study of the polycarboxylic acids used for paper wet strength improvement. Ind Eng Chem Res 35(11):4037-042 u">CrossRef
    16. Proniewicz LM, Paluszkiewicz C, Weselucha-Birczynska A, Majcherczyk H, Baranski A, Konieczna A (2001) FT-IR and FT-Raman study of hydrothermally degraded cellulose. J Mol Struct 596:163-69 CrossRef
    17. Tatsumi D, Yamauchi T, Murakami K (1995) FT-IR spectroscopy in the evaluation of dry handsheets with an acrylamide-based dry-strength resin. Nord Pulp Pap Res J 10(2):94-7 CrossRef
    18. Rouchon V, Pellizzi E, Janssens K (2010) FTIR techniques applied to the detection of gelatin in paper artifacts: From macroscopic to microscopic approach. Appl Phys A Mater Sci Process 100(3):663-69 CrossRef
    19. Workman JJ Jr (2001) Infrared and Raman spectroscopy in paper and pulp analysis. Appl Spectrosc Rev 36(2-):139-68 CrossRef
    20. Wahls MWC, Kentta E, Leyte JC (2000) Depth profiles in coated paper: experimental and simulated FTIR photoacoustic difference magnitude spectra. Appl Spectrosc 54(2):214-20 CrossRef
    21. Poli T, Chiantore O, Giovagnoli A, Piccirillo A (2012) FTIR imaging investigation in MIR and in an enlarged MIR-NIR spectral range. Anal Bioanal Chem 402(9):2977-984 CrossRef
    22. Spring M, Ricci C, Peggie DA, Kazarian SG (2008) ATR-FTIR imaging for the analysis of organic materials in paint cross sections: case studies on paint samples from the National Gallery, London. Anal Bioanal Chem 392(1-):37-5 CrossRef
    23. Joseph E, Prati S, Sciutto G, Ioele M, Santopadre P, Mazzeo R (2010) Performance evaluation of mapping and linear imaging FTIR microspectroscopy for the characterization of paint cross sections. Anal Bioanal Chem 396(2):899-10 CrossRef
    24. Rizzo A (2008) Progress in the application of ATR-FTIR microscopy to the study of multi-layered cross-sections from works of art. Anal Bioanal Chem 392(1-):47-5 CrossRef
    25. Belbachir K, Lecompte S, Ta HP, Petibois C, Desbat B (2011) Orientation of molecular groups of fibers in nonoriented samples determined by polarized ATR-FTIR spectroscopy. Anal Bioanal Chem 401:3263-268 CrossRef
    26. Tasker S, Badyal JPS, Backson SCE, Richards RW (1994) Hydroxyl accessibility in cellulose. Polymer 35(22):4717-721 CrossRef
    27. Mitchell AJ (1990) Second derivative FTIR spectra of native celluloses. Carbohydr Res 197:53-0 CrossRef
    28. Ali M, Emsley AM, Herman H, Heywood RJ (2001) Spectroscopic studies of the ageing of cellulosic paper. Polymer 42:2893-900 CrossRef
    29. Sarmiento A, Perez-Alonso M, Olivares M, Castro K, Martinez-Arkarazo I, Fernandez LA, Madariaga JM (2011) Classification and identification of organic binding media in artworks by means of Fourier transform infrared spectroscopy and principal component analysis. Anal Bioanal Chem 399(10):3601-611 CrossRef
    30. Ruiz JRR, Parelló TC, Gómez RC (2012) Comparative study of multivariate methods to identify paper finishes using infrared spectroscopy. IEEE Trans Instrum Meas 61(4):1029-036 CrossRef
    31. Ferreira PJ, Gamelas JA, Moutinho IM, Ferreira AG, Gomez N, Molleda C, Figueiredo MM (2009) Application of FT-IR-ATR spectroscopy to evaluate the penetration of surface sizing agents into the paper structure. Ind Eng Chem Res 48(8):3867-872 CrossRef
    32. Ferreira A, Figueira F, Pessanha S, Nielsen I, Carvalho ML (2010) Study of air-induced paper discolorations by infrared spectroscopy, X-ray fluorescence, and scanning electron microscopy. Appl Spectrosc 64(2):149-53 CrossRef
    33. Robotti E, Bobba M, Panepinto A, Marengo E (2007) Monitoring of the surface of paper samples exposed to UV light by ATR-FT-IR spectroscopy and use of multivariate control charts. Anal Bioanal Chem 388(5-):1249-263 CrossRef
    34. Eder GC, Spoljaric-Lukacic L, Chernev BS (2012) Visualisation and characterisation of ageing induced changes of polymeric surfaces by spectroscopic imaging methods. Anal Bioanal Chem 403(3):683-95 CrossRef
    35. de Fonjaudran CM, Nevin A, Pique F, Cather S (2008) Stratigraphic analysis of organic materials in wall painting samples using micro-FTIR attenuated total reflectance and a novel sample preparation technique. Anal Bioanal Chem 392(1-):77-6 CrossRef
    36. Socrates G (2001) Infrared and Raman characteristic group frequencies. Wiley, Hoboken
    37. Lojewski T, Miskowiec P, Missori M, Lubanska A, Proniewicz LM, Lojewska J (2010) FTIR and UV/vis as methods for evaluation of oxidative degradation of model paper: DFT approach for carbonyl vibrations. Carbohydr Polym 82(2):227-38 CrossRef
    38. Chen HC, Ferrari C, Angiuli M, Yao J, Raspi C, Bramanti E (2010) Qualitative and quantitative analysis of wood samples by Fourier transform infrared spectroscopy and multivariate analysis. Carbohydr Polym 82(3):772-78 CrossRef
    39. Proniewicz LM, Paluszkiewicz C, Weselucha-Birczynska A, Majcherczyk H, Baranski A, Konieczna A (2001) FT-IR and FT-Raman study of hydrothermally degradated cellulose. J Mol Struct 596:163-69 CrossRef
    40. Ivanova NV, Korolenko EA, Korolik EV, Zhbankov RG (1989) IR spectrum of cellulose. J Appl Spectrosc 51(2):847-51 CrossRef
    41. Mendoza-Payan JG, Gallardo SF, Marquez-Lucero A (2009) Design for an ultrafast water distributed sensor employing polyvinylamine cross-linked with Cu(II). Sens Actuators, B 142:130-40 CrossRef
    42. Das PK, Ruzmaikina I, Belfiore LA (2000) Poly(vinylamine) complexes with f-block salts from the lanthanide series that exhibit significant glass-transition temperature enhancement. J Polym Sci Part B Polym Phys 38(14):1931-938 CrossRef
    43. Yu S, Ma M, Liu J, Tao J, Liu M, Gao C (2011) Study on polyamide thin-film composite nanofiltration membrane by interfacial polymerization of polyvinylamine (PVAm) and isophthaloyl chloride (IPC). J Membr Sci 379:164-73 CrossRef
    44. Enriquez EP, Schneider HM, Granick S (1995) PMMA adsorption over previously adsorbed PS studied by polarized FTIR-ATR. J Polym Sci Part B Polym Phys 33:2429-437 CrossRef
    45. Mallik RR, Pritchard RG, Horley CC, Comyn J (1985) An inelastic electron tunneling spectroscopy (IETS) study of poly(vinylacetate) poly(methyl methacrylate) and poly(vinylalcohol) adsorbed on aluminium oxide. Polymer 26:551-56 CrossRef
    46. Lojewska J, Miskowiec P, Lojewski T, Proniewicz LM (2005) Cellulose oxidative and hydrolytic degradation: In situ FTIR approach. Polym Degrad Stab 88:512-20 CrossRef
    47. Colthup NB, Daly LH (1990) Introduction to infrared and Raman spectroscopy. Wiberley, San Diego
  • 作者单位:S. Genest (1) (2)
    R. Salzer (3)
    G. Steiner (4)

    1. Leibniz-Institut für Polymerforschung Dresden e.V., P.O. Box 120 411, 01005, Dresden, Germany
    2. Organische Chemie der Polymere, Technische Universit?t Dresden, 01062, Dresden, Germany
    3. Department of Chemistry and Food Chemistry, Dresden University of Technology, 01062, Dresden, Germany
    4. Clinical Sensoring and Monitoring, Faculty of Medicine, Dresden University of Technology, Fetscher Str. 74, 01307, Dresden, Germany
  • ISSN:1618-2650
文摘
The molecular imaging of paper cross sections containing the wet-strength additive poly(amidoamine)–epichlorohydrin (PAE) was effected by Fourier transform infrared (FT-IR) spectroscopic imaging. Thin cross sections of laboratory sheet samples were prepared and transferred onto CaF2ub> substrates. A laboratory sheet sample without PAE acted as a reference. Principal component analysis (PCA) was applied to identify and to reveal the distribution of PAE across the section. Differences in the loading plots of the fourth and fifth principal components for the sheets with and without PAE were found in the region of the amide I, amide II, and amine bands within a variance of 0.4-.8?%. The score images of the PCA reveal inhomogeneous distribution of PAE. Small areas of higher concentration of PAE occur across the cross section. The aim of this study was to demonstrate that FT-IR spectroscopic imaging provides spatially resolved quantitative information about the chemical composition of paper, which was successfully achieved. Figure New analytical approach for imaging paper cross sections at molecular level

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700