A quantitative structure–property relationship for determination of enthalpy of fusion of pure compounds
详细信息    查看全文
  • 作者:Farhad Gharagheizi (1) fghara@ut.ac.ir
    Mohammad Reza Samiee Gohar (23)
    Mahsa Ghotbi Vayeghan (4)
  • 关键词:Enthalpy of fusion – QSPR – Genetic algorithm
  • 刊名:Journal of Thermal Analysis and Calorimetry
  • 出版年:2012
  • 出版时间:July 2012
  • 年:2012
  • 卷:109
  • 期:1
  • 页码:501-506
  • 全文大小:327.9 KB
  • 参考文献:1. Chickos JS, Acree WE Jr. Total phase change entropies and enthalpies. An update on fusion enthalpies and their estimation. Thermochim Acta. 2009;495(1–2):5–13. doi:
    2. Marsh KN, Hall KR, Frenkel ML. Thermodynamic properties of organic compounds and their mixtures. Berlin: Springer; 1995.
    3. Jouyban A. Handbook of solubility data for pharmaceuticals. Boca Raton: CRC Press; 2010.
    4. Xu F, Sun LX, Tan ZC, Liang JG, Zhang T. Adiabatic calorimetry and thermal analysis on acetaminophen. J Therm Anal Calorim. 2006;83(1):187–91. doi:
    5. Gonzales C, Sempere J, Nomen DR, Waldram S. Adiabatic calorimetry using directly agitated test cells. J Therm Anal Calorim. 1999;58(1):183–91.
    6. Maschio G, Feliu JA, Ligthart J, Ferrara I, Bassani C. The use of adiabatic calorimetry for the process analysis and safety evaluation in free radical polymerization. J Therm Anal Calorim. 1999;58(1):201–14.
    7. Sempere J, Nomen R, Serra R, Gallice F. Determination of activation energies by using different factors Phi in adiabatic calorimetry. J Therm Anal Calorim. 1999;58(1):215–23.
    8. van Miltenburg JC, Mathot VBF, van Ekeren PJ, Ionescu LD. Adiabatic calorimetry of a very low density polyethylene copolymer. J Therm Anal Calorim. 1999;56(3):1017–23.
    9. van Ekeren PJ, Ionescu LD, Mathot VBF, van Miltenburg JC. Heat capacities and thermal properties of a homogeneous ethylene-1-octene copolymer by adiabatic calorimetry. J Therm Anal Calorim. 2000;59(3):683–97.
    10. Song YJ, Meng SH, Wang FD, Sun CX, Tan ZC. A study on the thermodynamic properties of polyimide BTDA-ODA by adiabatic calorimetry and thermal analysis. J Therm Anal Calorim. 2002;69(2):617–25.
    11. El-Bushra SE. Construction of an isoperibol calorimeter to measure the specific heat capacity of foods between 20 and 90°C. J Therm Anal Calorim. 2001;64(1):261–72.
    12. Schaffer B, Lorinczy D. Isoperibol calorimetry as a tool to evaluate the impact of the ratio of exopolysaccharide-producing microbes on the properties of sour cream. J Therm Anal Calorim. 2005;82(2):537–41. doi:
    13. Wurster DE, Bandopadhyay R. The use of isoperibol calorimetry for the study of age-related changes in glucose uptake by erythrocytes. J Therm Anal Calorim. 2005;79(3):737–40.
    14. Santos L, Silva MT, Schroder B, Gomes L. Labtermo: methodologies for the calculation of the corrected temperature rise in isoperibol calorimetry. J Therm Anal Calorim. 2007;89(1):175–80.
    15. Vargas EF, Moreno JC, Forero J, Parra DF. A versatile and high-precision solution-reaction isoperibol calorimeter. J Therm Anal Calorim. 2008;91(2):659–62. doi:
    16. Ellaite M, Dalmazzone D. Modernization and validation of an isoperibol rotating bomb calorimeter for the measurement of energies of combustion of sulphur compounds. J Therm Anal Calorim. 2010;99(3):939–45. doi:
    17. Baert G, Hoste S, De Schutter G, De Belie N. Reactivity of fly ash in cement paste studied by means of thermogravimetry and isothermal calorimetry. J Therm Anal Calorim. 2008;94(2):485–92. doi:
    18. Razafindralambo H, Dufour S, Paquot M, Deleu M. Thermodynamic studies of the binding interactions of surfactin analogues to lipid vesicles. Application of isothermal titration calorimetry. J Therm Anal Calorim. 2009;95(3):817–21. doi:
    19. Taheri-Kafrani A, Bordbar AK. Energitics of micellizaion of sodium n-dodecyl sulfate at physiological conditions using isothermal titration calorimetry. J Therm Anal Calorim. 2009;98(2):567–75. doi:
    20. Behbehani GR, Saboury AA, Barzegar L, Zarean O, Abedini J, Payehghdr M. A thermodynamic study on the interaction of nickel ion with myelin basic protein by isothermal titration calorimetry. J Therm Anal Calorim. 2010;101(1):379–84. doi:
    21. Ageeva T, Utzig E, Golubchikov O, Zielenkiewicz W. Thermokinetic studies of porphyrin complexation in non-aqueous solutions by heat conduction microcalorimetry. J Therm Anal Calorim. 1998;54(1):243–8.
    22. Socorro F, de Rivera MR. Micro-effects on continuous-injection heat conduction calorimetry. J Therm Anal Calorim. 1998;52(3):729–37.
    23. Torra V, Tachoire H. Conduction calorimeters heat transmission systems with uncertainties. J Therm Anal Calorim. 1998;52(3):663–81.
    24. Utzig E. Heat conduction microcalorimeter for thermokinetics and titration experiments. J Therm Anal Calorim. 1998;54(1):391–7.
    25. Zielenkiewicz W, Kaminski M. A conduction calorimeter for measuring the heat of cement hydration in the initial hydration period. J Therm Anal Calorim. 2001;65(2):335–40.
    26. O’Neill MAA, Beezer AE, Morris AC, Urakami K, Willson RJ, Connor JA. Solid-state reactions from isothermal heat conduction microcalorimetry—theoretical approach and evaluation via simulated data. J Therm Anal Calorim. 2003;73(2):709–14.
    27. Shao YH, Ren XN, Liu ZR. Studies of mechanism of silica polymerization reactions in the combination of silica sol and potassium sodium waterglass via isothermal heat conduction microcalorimetry. J Therm Anal Calorim. 2010;101(3):1135–41. doi:
    28. Bondi AA. Physical properties of molecular crystals, liquids, and glasses. Wiley Series on the Science and Technology of Materials. New York: Wiley; 1968.
    29. Marrero J, Gani R. Group-contribution based estimation of pure component properties. Fluid Phase Equilib. 2001;183–184:183–208.
    30. Dyekjaer JD, Jonsdottir SO. QSPR models based on molecular mechanics and quantum chemical calculations. 2. Thermodynamic properties of alkanes, alcohols, polyols, and ethers. Ind Eng Chem Res. 2003;42(18):4241–59.
    31. Puri S, Chickos JS, Welsh WJ. Three-dimensional quantitative structure-property relationship (3D-QSPR) models for prediction of thermodynamic properties of polychlorinated biphenyls (PCBs): enthalpies of fusion and their application to estimates of enthalpies of sublimation and aqueous solubilities. J Chem Inf Comput Sci. 2003;43(1):55–62. doi:
    32. Kim CK, Lee KA, Hyun KH, Park HJ, Kwack IY, Lee HW, et al. Prediction of physicochemical properties of organic molecules using van der Waals surface electrostatic potentials. J Comput Chem. 2004;25(16):2073–9. doi:
    33. Goodarzi M, Chen T, Freitas MP. QSPR predictions of heat of fusion of organic compounds using Bayesian regularized artificial neural networks. Chemom Intell Lab Syst. 2010;104(2):260–4. doi:
    34. Zong L, Ramanathan S, Chen CC. Predicting thermophysical properties of mono- and diglycerides with the chemical constituent fragment approach. Ind Eng Chem Res. 2010;49(11):5479–84. doi:
    35. Gharagheizi F. New neural network group contribution model for estimation of lower flammability limit temperature of pure compounds. Ind Eng Chem Res. 2009;48(15):7406–16. doi:
    36. Gharagheizi F. A new group contribution-based model for estimation of lower flammability limit of pure compounds. J Hazard Mater. 2009;170(2–3):595–604. doi:
    37. Gharagheizi F. An accurate model for prediction of autoignition temperature of pure compounds. J Hazard Mater. 2011;189(1–2):211–21. doi:
    38. Gharagheizi F, Abbasi R. A new neural network group contribution method for estimation of upper flash point of pure chemicals. Ind Eng Chem Res. 2010;49(24):12685–95. doi:
    39. Gharagheizi F, Abbasi R, Tirandazi B. Prediction of Henry’s law constant of organic compounds in water from a new group-contribution-based model. Ind Eng Chem Res. 2010;49(20):10149–52. doi:
    40. Gharagheizi F, Babaie O, Mazdeyasna S. Prediction of vaporization enthalpy of pure compounds using a group contribution-based method. Ind Eng Chem Res. 2011;50(10):6503–7. doi:
    41. Gharagheizi F, Eslamimanesh A, Mohammadi AH, Richon D. Representation/prediction of solubilities of pure compounds in water using artificial neural network-group contribution method. J Chem Eng Data. 2011;56(4):720–6. doi:
    42. Gharagheizi F, Eslamimanesh A, Mohammadi AH, Richon D. Determination of parachor of various compounds using an artificial neural network-group contribution method. Ind Eng Chem Res. 2011;50(9):5815–23. doi:
    43. Gharagheizi F, Eslamimanesh A, Mohammadi AH, Richon D. QSPR approach for determination of parachor of non-electrolyte organic compounds. Chem Eng Sci. 2011;66(13):2959–67. doi:
    44. Gharagheizi F, Eslamimanesh A, Mohammadi AH, Richon D. Representation and prediction of molecular diffusivity of nonelectrolyte organic compounds in water at infinite dilution using the artificial neural network-group contribution method. J Chem Eng Data. 2011;56(5):1741–50. doi:
    45. Gharagheizi F, Eslamimanesh A, Mohammadi AH, Richon D. Determination of critical properties and acentric factors of pure compounds using the artificial neural network group contribution algorithm. J Chem Eng Data. 2011;56(5):2460–76. doi:
    46. Gharagheizi F, Eslamimanesh A, Mohammadi AH, Richon D. Use of artificial neural network-group contribution method to determine surface tension of pure compounds. J Chem Eng Data. 2011;56(5):2587–601. doi:
    47. Gharagheizi F, Sattari M, Tirandazi B. Prediction of crystal lattice energy using enthalpy of sublimation: a group contribution-based model. Ind Eng Chem Res. 2011;50(4):2482–6. doi:
    48. Gharagheizi F, Salehi GR. Prediction of enthalpy of fusion of pure compounds using an artificial neural network-group contribution method. Thermochim Acta. doi:10.1016/j.tca.2011.04.001.
    49. Gharagheizi F. Quantitative structure-property relationship for prediction of the lower flammability limit of pure compounds. Energy Fuels. 2008;22(5):3037–9. doi:
    50. Yaws CL. Yaws’ handbook of thermodynamic and physical properties of chemical compounds. New York: Knovel; 2003.
    51. Todeschini R, Consonni V. Molecular descriptors for chemoinformatics. 2nd ed. Revised and enlarged edition. Weinheim: Wiley-VCH; Chichester: John Wiley [distributor]; 2009.
    52. Gharagheizi F. A new accurate neural network quantitative structure-property relationship for prediction of theta (lower critical solution temperature) of polymer solutions. E-Polymers; 2007; no. 114.
    53. Gharagheizi F. QSPR analysis for intrinsic viscosity of polymer solutions by means of GA-MLR and RBFNN. Comput Mater Sci. 2007;40(1):159–67.
    54. Gharagheizi F, Mehrpooya M. Prediction of standard chemical energy by a three descriptors QSPR model. Energy Convers Manag. 2007;48(9):2453–60.
    55. Vatani A, Mehrpooya M, Gharagheizi F. Prediction of standard enthalpy of formation by a QSPR model. Int J Mol Sci. 2007;8(5):407–32.
    56. Gharagheizi F. A simple equation for prediction of net heat of combustion of pure chemicals. Chemom Intell Lab Syst. 2008;91(2):177–80.
    57. Gharagheizi F. A new molecular-based model for prediction of enthalpy of sublimation of pure components. Thermochim Acta. 2008;469(1–2):8–11.
    58. Gharagheizi F. QSPR studies for solubility parameter by means of genetic algorithm-based multivariate linear regression and generalized regression neural network. QSAR Comb Sci. 2008;27(2):165–70.
    59. Gharagheizi F, Alamdari RF. Prediction of flash point temperature of pure components using a quantitative structure–property relationship model. QSAR Comb Sc. 2008;27(6):679–83.
    60. Gharagheizi F, Alamdari RF. A molecular-based model for prediction of solubility of C60 fullerene in various solvents. Fuller Nanotub Carbon Nanostruct. 2008;16(1):40–57.
    61. Gharagheizi F, Fazzeli A. Prediction of the Watson characterization factor of hydrocarbon components from molecular properties. QSAR Comb Sci. 2008;27(6):758–67.
    62. Gharagheizi F, Mehrpooya M. Prediction of some important physical properties of sulfur compounds using quantitative structure-properties relationships. Mol Divers. 2008;12(3–4):143–55.
    63. Sattari M, Gharagheizi F. Prediction of molecular diffusivity of pure components into air: a QSPR approach. Chemosphere. 2008;72(9):1298–302.
    64. Gharagheizi F. A QSPR model for estimation of lower flammability limit temperature of pure compounds based on molecular structure. J Hazard Mater. 2009;169(1–3):217–20.
    65. Gharagheizi F. Prediction of upper flammability limit percent of pure compounds from their molecular structures. J Hazard Mater. 2009;167(1–3):507–10.
    66. Gharagheizi F. Prediction of the standard enthalpy of formation of pure compounds using molecular structure. Aust J Chem. 2009;62(4):376–81.
    67. Gharagheizi F, Sattari M. Estimation of molecular diffusivity of pure chemicals in water: a quantitative structure-property relationship study. SAR QSAR Environ Res. 2009;20(3–4):267–85.
    68. Gharagheizi F, Sattari M. Prediction of the theta (UCST) of polymer solutions: a quantitative structure-property relationship study. Ind Eng Chem Res. 2009;48(19):9054–60.
    69. Gharagheizi F, Tirandazi B, Barzin R. Estimation of aniline point temperature of pure hydrocarbons: a quantitative structure-property relationship approach. Ind Eng Chem Res. 2009;48(3):1678–82.
    70. Gharagheizi F. Chemical structure-based model for estimation of the upper flammability limit of pure compounds. Energy Fuels. 2010;24(7):3867–71.
    71. Gharagheizi F, Sattari M. Prediction of triple-point temperature of pure components using their chemical structures. Ind Eng Chem Res. 2010;49(2):929–32.
    72. Mehrpooya M, Gharagheizi F. A molecular approach for the prediction of sulfur compound solubility parameters. Phosphorus Sulfur Silicon Relat Elem. 2010;185(1):204–10.
    73. Talete srl, Dragon for Windows Software for molecular descriptor calculation, version 5.4. 2007.
    74. Hyperchem Release 7.5 for Windows; Gainesville: Hypercube, Inc. 2002.
    75. Todeschini R, Consonni V. Molecular descriptors for chemoinformatics. 2nd ed. Revised and enlarged edition. Weinheim: Wiley-VCH; Chichester: John Wiley; 2009.
    76. Leardi R, Boggia R, Terrile M. Genetic algorithms as a strategy for feature selection. J Chemom. 1992;6:267–81.
    77. Todeschini R, Consonni V, Mauri A, Pavan M. Detecting “bad” regression models: multicriteria fitness functions in regression analysis. Anal Chim Acta. 2004;515(1):199–208.
  • 作者单位:1. Saman Energy Giti Co., 3331619636 Tehran, Iran2. Department of Chemical Engineering, Sharif University of Technology, 16558-65871, Tehran, Iran3. Process Department, Sazeh Consultants Engineers, Tehran, Iran4. Department of Chemistry, Islamic Azad University, North Tehran Branch, Tehran, Iran
  • 刊物类别:Chemistry and Materials Science
  • 刊物主题:Chemistry
    Sciences
    Polymer Sciences
    Physical Chemistry
    Inorganic Chemistry
    Measurement Science and Instrumentation
  • 出版者:Akad茅miai Kiad贸, co-published with Springer Science+Business Media B.V., Formerly Kluwer Academic
  • ISSN:1572-8943
文摘
In this study, the quantitative structure–property relationship method is applied to predict the enthalpy of fusion of pure chemical compounds at their normal melting point. A genetic algorithm-based multivariate linear regression is used to select the most statistically effective molecular descriptors for evaluating this property. To propose a comprehensive and predictive model, 3,846 pure chemical compounds are investigated. The root mean square of error and the average absolute deviation of the model are equal to 2.57 kJ/mol and 9.7%.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700