An Experimental and Computational Investigation of Bone Formation in Mechanically Loaded Trabecular Bone Explants
详细信息    查看全文
  • 作者:E. Birmingham ; G. L. Niebur ; L. M. McNamara…
  • 关键词:Bone marrow multipotent stromal cells ; Bone tissue engineering ; Bone marrow ; Fluid structure interaction ; Shear stress ; Bioreactor ; Marrow
  • 刊名:Annals of Biomedical Engineering
  • 出版年:2016
  • 出版时间:April 2016
  • 年:2016
  • 卷:44
  • 期:4
  • 页码:1191-1203
  • 全文大小:2,260 KB
  • 参考文献:1.Arnsdorf, E. J., P. Tummala, R. Y. Kwon, and C. R. Jacobs. Mechanically induced osteogenic differentiation–the role of RhoA, ROCKII and cytoskeletal dynamics. J. Cell Sci. 122:546–553, 2009.CrossRef PubMed PubMedCentral
    2.Bakker, A. D., M. Joldersma, J. Klein-Nulend, and E. H. Burger. Interactive effects of PTH and mechanical stress on nitric oxide and PGE2 production by primary mouse osteoblastic cells. Am. J. Physiol. Endocrinol. Metab. 285:E608–E613, 2003.CrossRef PubMed
    3.Birmingham, E., J. A. Grogan, G. L. Niebur, L. M. McNamara, and P. E. McHugh. Computational modelling of the mechanics of trabecular bone and marrow using fluid structure interaction techniques. Ann. Biomed. Eng. 41:814–826, 2013.CrossRef PubMed
    4.Birmingham, E., T. C. Kreipke, E. B. Dolan, T. R. Coughlin, P. Owens, L. M. McNamara, G. L. Niebur, and P. E. McHugh. Mechanical stimulation of bone marrow in situ induces bone formation in trabecular explants. Ann. Biomed. Eng. 2014. doi:10.​1007/​s10439-014-1135-0 .PubMed
    5.Birmingham, E., G. L. Niebur, P. E. McHugh, G. Shaw, F. P. Barry, and L. M. McNamara. Osteogenic differentiation of mesenchymal stem cells is regulated by osteocyte and osteoblast cells in a simplified bone niche. Eur. Cell Mater. 23:13–27, 2012.PubMed
    6.Bonewald, L. F. Osteocytes as dynamic multifunctional cells. Ann. N. Y. Acad. Sci. 1116:281–290, 2007.CrossRef PubMed
    7.Bryant, J. D., T. David, P. H. Gaskell, S. King, and G. Lond. Rheology of bovine bone marrow. Proc. Inst. Mech. Eng. H 203:71–75, 1989.CrossRef PubMed
    8.Burr, D. B., C. Milgrom, D. Fyhrie, M. Forwood, M. Nyska, A. Finestone, S. Hoshaw, E. Saiag, and A. Simkin. In vivo measurement of human tibial strains during vigorous activity. Bone 18:405–410, 1996.CrossRef PubMed
    9.Carter, D. R., D. P. Fyhrie, and R. T. Whalen. Trabecular bone density and loading history: regulation of connective tissue biology by mechanical energy. J. Biomech. 20:785–794, 1987.CrossRef PubMed
    10.Cartmell, S. H., B. D. Porter, A. J. García, and R. E. Guldberg. Effects of medium perfusion rate on cell-seeded three-dimensional bone constructs in vitro. Tissue Eng. 9:1197–1203, 2003.CrossRef PubMed
    11.Case, N., B. Sen, J. A. Thomas, M. Styner, Z. Xie, C. R. Jacobs, and J. Rubin. Steady and oscillatory fluid flows produce a similar osteogenic phenotype. Calcif. Tissue Int. 88:189–197, 2011.CrossRef PubMed PubMedCentral
    12.Chen, J. C., and C. R. Jacobs. Mechanically induced osteogenic lineage commitment of stem cells. Stem Cell Res. Ther. 4:107, 2013.CrossRef PubMed PubMedCentral
    13.Coughlin, T. R., and G. L. Niebur. Fluid shear stress in trabecular bone marrow due to low-magnitude high-frequency vibration. J. Biomech. 45:2222–2229, 2012.CrossRef PubMed
    14.David, V., A. Guignandon, A. Martin, L. Malaval, M.-H. Lafage-Proust, A. Rattner, V. Mann, B. Noble, D. B. Jones, and L. Vico. Ex vivo bone formation in bovine trabecular bone cultured in a dynamic 3D bioreactor is enhanced by compressive mechanical strain. Tissue Eng. A 14:117–126, 2008.
    15.Davies, C. M., D. B. Jones, M. J. Stoddart, K. Koller, E. Smith, C. W. Archer, and R. G. Richards. Mechanically loaded ex vivo bone culture system “Zetos”: systems and culture preparation. Eur. Cell Mater. 11:57–75, 2006; (discussion 75, 2006).PubMed
    16.Dickerson, D. A., E. A. Sander, and E. A. Nauman. Modeling the mechanical consequences of vibratory loading in the vertebral body: microscale effects. Biomech. Model. Mechanobiol. 7:191–202, 2008.CrossRef PubMed
    17.Endres, S., M. Kratz, S. Wunsch, and D. B. Jones. Zetos: a culture loading system for trabecular bone. Investigation of different loading signal intensities on bovine bone cylinders. J. Musculoskelet. Neuronal Interact. 9:173–183, 2009.PubMed
    18.Fritton, S. P., K. J. McLeod, and C. T. Rubin. Quantifying the strain history of bone: spatial uniformity and self-similarity of low-magnitude strains. J. Biomech. 33:317–325, 2000.CrossRef PubMed
    19.Frost, H. M. Bone, “mass” and the “mechanostat”: a proposal. Anat. Rec. 219:1–9, 1987.CrossRef PubMed
    20.Garman, R., G. Gaudette, L.-R. Donahue, C. Rubin, and S. Judex. Low-level accelerations applied in the absence of weight bearing can enhance trabecular bone formation. J. Orthop. Res. 25:732–740, 2007.CrossRef PubMed
    21.Govey, P. M., A. E. Loiselle, and H. J. Donahue. Biophysical regulation of stem cell differentiation. Curr. Osteoporos. Rep. 11:83–91, 2013.CrossRef PubMed
    22.Gurkan, U. A., and O. Akkus. The mechanical environment of bone marrow: a review. Ann. Biomed. Eng. 36:1978–1991, 2008.CrossRef PubMed
    23.Huiskes, R., R. Ruimerman, G. H. van Lenthe, and J. D. Janssen. Effects of mechanical forces on maintenance and adaptation of form in trabecular bone. Nature 405:704–706, 2000.CrossRef PubMed
    24.Jones, D. B., E. Broeckmann, T. Pohl, and E. L. Smith. Development of a mechanical testing and loading system for trabecular bone studies for long term culture. Eur. Cell Mater. 5:48–59, 2003; (discussion 59–60, 2003).PubMed
    25.Kajimura, D., R. Paone, J. J. Mann, and G. Karsenty. Foxo1 regulates Dbh expression and the activity of the sympathetic nervous system in vivo. Mol. Metab. 3:770–777, 2014.CrossRef PubMed PubMedCentral
    26.Keaveny, T. M., E. F. Morgan, G. L. Niebur, and O. C. Yeh. Biomechanics of trabecular bone. Annu. Rev. Biomed. Eng. 3:307–333, 2001.CrossRef PubMed
    27.Lambers, F. M., K. Koch, G. Kuhn, D. Ruffoni, C. Weigt, F. A. Schulte, and R. Müller. Trabecular bone adapts to long-term cyclic loading by increasing stiffness and normalization of dynamic morphometric rates. Bone. doi:10.​1016/​j.​bone.​2013.​04.​016 .
    28.Lukas, C., D. Ruffoni, F. M. Lambers, F. A. Schulte, G. Kuhn, P. Kollmannsberger, R. Weinkamer, and R. Müller. Mineralization kinetics in murine trabecular bone quantified by time-lapsed in vivo micro-computed tomography. Bone 56:55–60, 2013.CrossRef PubMed
    29.Mann, V., C. Huber, G. Kogianni, D. Jones, and B. Noble. The influence of mechanical stimulation on osteocyte apoptosis and bone viability in human trabecular bone. J. Musculoskelet. Neuronal Interact. 6:408–417, 2006.PubMed PubMedCentral
    30.Metzger, T. A., T. C. Kreipke, T. J. Vaughan, L. McNamara, and G. L. Niebur. The in situ mechanics of trabecular bone marrow: the potential for mechanobiological response. J. Biomech. Eng. 2014. doi:10.​1115/​1.​4028985 .
    31.Mohsin, S., F. J. O’Brien, and T. C. Lee. Microcracks in compact bone: a three-dimensional view. J. Anat. 209:119–124, 2006.CrossRef PubMed PubMedCentral
    32.Mosley, J. R. Osteoporosis and bone functional adaptation: mechanobiological regulation of bone architecture in growing and adult bone, a review. J. Rehabil. Res. Dev. 37:189–199, 2000.PubMed
    33.Nauman, E. A., R. L. Satcher, T. M. Keaveny, B. P. Halloran, and D. D. Bikle. Osteoblasts respond to pulsatile fluid flow with short-term increases in PGE2 but no change in mineralization. J. Appl. Physiol. 90:1849–1854, 2001.PubMed
    34.Parfitt, A. M., M. K. Drezner, F. H. Glorieux, J. A. Kanis, H. Malluche, P. J. Meunier, S. M. Ott, and R. R. Recker. Bone histomorphometry: standardization of nomenclature, symbols, and units: report of the asbmr histomorphometry nomenclature committee. J. Bone Miner. Res. 2:595–610, 1987.CrossRef PubMed
    35.DS SIMULIA. Abaqus 6.12 theory manual. Providence, RI: DS SIMULIA Corp., 2012.
    36.Qin, Y.-X., and H. Lam. Intramedullary pressure and matrix strain induced by oscillatory skeletal muscle stimulation and its potential in adaptation. J. Biomech. 42:140–145, 2009.CrossRef PubMed PubMedCentral
    37.Qin, Y. X., H. Lam, S. Ferreri, and C. Rubin. Dynamic skeletal muscle stimulation and its potential in bone adaptation. J. Musculoskelet. Neuronal Interact. 10:12–24, 2010.PubMed
    38.Recker, R. R., D. B. Kimmel, A. M. Parfitt, K. M. Davies, N. Keshawarz, and S. Hinders. Static and tetracycline-based bone histomorphometric data from 34 normal postmenopausal females. J. Bone Miner. Res. 3:133–144, 1988.CrossRef PubMed
    39.Sandino, C., J. A. Planell, and D. Lacroix. A finite element study of mechanical stimuli in scaffolds for bone tissue engineering. J. Biomech. 41:1005–1014, 2008.CrossRef PubMed
    40.Schaffler, M. B., W.-Y. Cheung, R. Majeska, and O. Kennedy. Osteocytes: master orchestrators of bone. Calcif. Tissue Int. 2013. doi:10.​1007/​s00223-013-9790-y .PubMed PubMedCentral
    41.Schulte, F. A., A. Zwahlen, F. M. Lambers, G. Kuhn, D. Ruffoni, D. Betts, D. J. Webster, and R. Müller. Strain-adaptive in silico modeling of bone adaptation—a computer simulation validated by in vivo micro-computed tomography data. Bone 52:485–492, 2013.CrossRef PubMed
    42. Vaughan, T. J., M. Voisin, G. L. Niebur, and L. M. McNamara. Multiscale modeling of trabecular bone marrow: understanding the micromechanical environment of mesenchymal stem cells during osteoporosis. J. Biomech. Eng. 2015. doi:10.​1115/​1.​4028986 .
    43.Verbruggen, S. W., T. J. Vaughan, and L. M. McNamara. Strain amplification in bone mechanobiology: a computational investigation of the in vivo mechanics of osteocytes. J. R. Soc. Interface 9:2735–2744, 2012.CrossRef PubMed PubMedCentral
    44.Vivanco, J., S. Garcia, H. L. Ploeg, G. Alvarez, D. Cullen, and E. L. Smith. Apparent elastic modulus of ex vivo trabecular bovine bone increases with dynamic loading. Proc. Inst. Mech. Eng. H 227:904–912, 2013.CrossRef PubMed
    45.Webster, D., E. Wasserman, M. Ehrbar, F. Weber, I. Bab, and R. Müller. Mechanical loading of mouse caudal vertebrae increases trabecular and cortical bone mass-dependence on dose and genotype. Biomech. Model. Mechanobiol. 9:737–747, 2010.CrossRef PubMed
  • 作者单位:E. Birmingham (1)
    G. L. Niebur (2)
    L. M. McNamara (1)
    P. E. McHugh (1)

    1. Biomechanics Research Centre (BMEC), Biomedical Engineering, College of Engineering and Informatics, National University of Ireland Galway, Galway, Ireland
    2. Bioengineering Graduate Program, University of Notre Dame, Notre Dame, IN, 46556, USA
  • 刊物类别:Biomedical and Life Sciences
  • 刊物主题:Biomedicine
    Biomedicine
    Biomedical Engineering
    Biophysics and Biomedical Physics
    Mechanics
    Biochemistry
  • 出版者:Springer Netherlands
  • ISSN:1573-9686
文摘
Understanding how bone marrow multipotent stromal cells (MSCs) contribute to new bone formation and remodeling in vivo is of principal importance for informing the development of effective bone tissue engineering strategies in vitro. However, the precise in situ stimuli that MSCs experience have not been fully established. The shear stress generated within the bone marrow of physiologically loaded samples has never been determined, but could be playing an important role in the generation of sufficient stimulus for MSCs to undergo osteogenic differentiation. In this study fluid structure interaction (FSI) computational models were used in conjunction with a bioreactor which physiologically compresses explanted trabecular bone samples to determine whether MSCs can be directly stimulated by mechanical cues within the bone marrow. Experimentally loaded samples were found to have greater osteogenic activity, as verified by bone histomorphometry, compared to control static samples. FSI models demonstrated a linear relationship between increasing shear stress and decreasing bone volume. The FSI models demonstrated that bone strain, not marrow shear stress, was likely the overall driving mechanical signal for new bone formation during compression. However, the shear stress generated in the models is within the range of values which has been shown previously to generate an osteogenic response in MSCs.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700