Nanotechnology as Emerging Tool for Enhancing Solubility of Poorly Water-Soluble Drugs
详细信息    查看全文
  • 作者:Sandeep Kumar (1)
    Neeraj Dilbaghi (1)
    Ruma Saharan (1)
    Gaurav Bhanjana (1)
  • 关键词:Polymer ; based nanoparticles ; Lipid ; based nanoparticles ; Lipid–polymer hybrid nanoparticles ; Zeta potential ; Drug loading and release ; Cellular uptake and cytotoxicity
  • 刊名:BioNanoScience
  • 出版年:2012
  • 出版时间:December 2012
  • 年:2012
  • 卷:2
  • 期:4
  • 页码:227-250
  • 全文大小:782KB
  • 参考文献:1. Lipinski, C. A., Lombardo, F., Dominy, B. W., Feeney, P. (1997). Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. / Advanced Drug Delivery Reviews, 23, 3-5. CrossRef
    2. Klopman, G., & Zhu, H. (2001). Estimation of aqueous solubility of organic molecules by the group contribution approach. / Journal of Chemical Information and Computer Sciences, 41(2), 439-45. doi:10.1021/ci000152d .
    3. Brigger, I., Dubernet, C., Couvreur, P. (2002). Nanoparticles in cancer therapy and diagnosis. / Advanced Drug Delivery Reviews, 54(5), 631-51. doi:10.1016/S0169-409X(02)00044-3 . CrossRef
    4. Amidon, G. L., Lennernas, H., Shah, V. P., Crison, J. R. A. (1995). A theoretical basis for a biopharmaceutic drug classification: the correlation of in vitro drug product dissolution and in vivo bioavailability. / Pharmaceutical Research, 12(3), 413-19. doi:10.1023/A:1016212804288 . CrossRef
    5. Yu, L. X., Amidon, G. L., et al. (2002). A biopharmaceutics classification system: the scientific basis for biowaiver extensions. / Pharmaceutical Research, 19(7), 921-25. doi:10.1023/A:101647360163 . CrossRef
    6. Gothoskar, A. V. (2005). Biopharmaceutical classification of drugs. Pharmacy Review. Available from: http://www.pharmainfo.net/reviews/biopharmaceutical-classification-drugs. Accessed: 18 Jun 2012
    7. Thiel-Demby, V. E., Humphreys, J. E., et al. (2009). Biopharmaceutics classification system: validation and learnings of an in vitro permeability assay. / Molecular Pharmaceutics, 6(1), 11-8. doi:10.1021/mp800122b . CrossRef
    8. Chen, M., Amidon, G. L., Benet, L. Z., Lennernas, H., Yu, L. X. (2011). The BCS, BDDCS, and regulatory guidances. / Pharmaceutical Research, 28(7), 1774-778. doi:10.1007/s11095-011-0438-1 . CrossRef
    9. Pouton, C. W. (2006). Formulation of poorly water-soluble drugs for oral administration: physicochemical and physiological issues and the lipid formulation classification system. / European Journal of Pharmaceutical Sciences, 29(3-), 278-87. doi:10.1016/j.ejps.2006.04.016 . CrossRef
    10. Urbanetz, N. A. (2006). Stabilization of solid dispersions of nimodipine and polyethylene glycol 2000. / The European Journal of Pharmaceutical Sciences, 28(1-), 67-6. doi:10.1016/j.ejps.2005.12.009 . CrossRef
    11. Noyes, A. A., & Whitney, W. R. (1897). The rate of solution of solid substances in their own solutions. / Journal of the American Chemical Society, 19, 930-34. doi:10.1021/ja02086a003 . CrossRef
    12. Liversidge, G., & Cundy, K. (1995). Particle size reduction for improvement of oral bioavailability of hydrophobic drugs: I. Absolute oral bioavailability of nanocrystalline danazol in beagle dogs. / International Journal of Pharmaceutics, 125, 91-7. doi:10.1016/0378-5173(95)00122-Y . CrossRef
    13. Benet, L. Z. (2008). Bioavailability and bioequivalence: focus on physiological factors and variability. / Pharmaceutical Research, 25(8), 1956-962. doi:10.1007/s11095-008-9645-9 . CrossRef
    14. Tom, J. W., & Debenedetti, P. G. (1991). Particle formation with supercritical fluids—a review. / Journal of Aerosol Science, 22(5), 555-84. doi:10.1016/0021-8502(91)90013-8 . CrossRef
    15. Horn, D., & Rieger, J. (2001). Organic nanoparticles in the aqueous phase theory, experiment, and use. / Angewandte Chemie (International Ed. in English), 40(23), 4330-361. doi:10.1002/1521-3773(20011203)40:23<4330::AID-ANIE4330>3.0.CO;2-W . CrossRef
    16. Muller, R. H., Jacobs, C., Kayser, O. (2001). Nanosuspensions as particulate drug formulations in therapy: rationale for development and what we can expect in the future. / Advanced Drug Delivery Reviews, 47(1), 3-9. doi:10.1016/S0169-409X(00)00118-6 . CrossRef
    17. Rabinow, B. E. (2004). Nanosuspensions in drug delivery. / Nature Reviews Drug Discovery, 3(9), 785-96. doi:10.1038/nrd1494 . CrossRef
    18. Merisko-Liversidge, E., Liversidge, G. G., Cooper, E. R. (2004). Nanosizing: a formulation approach for poorly water-soluble compounds. / European Journal of Pharmaceutical Sciences, 18(2), 113-20. doi:10.1016/S0928-0987(02)00251-8 . CrossRef
    19. Suzuki, H., Ogawa, M., Hironaka, K., Ito, K., Sunada, H. (2001). A nifedipine coground mixture with sodium deoxycholate. II. Dissolution characteristics and stability. / Drug Development International Pharmacy, 27(9), 951-58. doi:10.1081/DDC-100107676 . CrossRef
    20. List, M., Sucker, H. (1998). Pharmaceutical colloidal hydrosols for injection. GB patent no. 2200048
    21. Rogers, T. L., et al. (2002). A novel particle engineering technology: spray–freezing into liquid. / International Journal of Pharmaceutics, 242(1-), 93-00. doi:10.1016/S0378-5173(02)00154-0 . CrossRef
    22. Hua, J., Keith, P., Johnston, B., Robert, O., Williams, A. (2004). Rapid dissolving high potency danazol powders produced by spray freezing into liquid process. / International Journal of Pharmaceutics, 271, 145-54. doi:10.1016/j.ijpharm.2003.11.003 . CrossRef
    23. Ribeiro, D. S., Richard, J. B. P., Thiesc, C., Benoit, J. P. (2002). Microencapsulation of protein particles within lipids using a novel supercritical fluid process. / International Journal of Pharmaceutics, 242(1), 69-8. doi:10.1016/S0378-5173(02)00149-7 . CrossRef
    24. Pathak, P., Meziani, M. J., Sun, Y.-P. (2005). Supercritical fluid technology for enhanced drug delivery. / Expert Opinion on Drug Delivery, 2(4), 747-61. doi:10.1517/17425247.2.4.747 . CrossRef
    25. Waard, H. D., Hinrichs, W. L. J., Frijlink, H. W. (2008). A novel bottom-up process to produce drug nanocrystals: controlled crystallization during freeze-drying. / Journal of Controlled Release, 128(2), 179-83. doi:10.1016/j.jconrel.2008.03.002 . CrossRef
    26. Pouton, C. W. (2000). Lipid formulations for oral administration of drugs: non-emulsifying, self-emulsifying and “self-microemulsifying-drug delivery systems. / European Journal of Pharmaceutical Sciences, 11, 93-8. doi:10.1016/S0928-0987(00)00167-6 . CrossRef
    27. Kawakami, K., Yoshikawa, T., Mororo, Y., Hayashi, T. (2002). Microemulsion formulation for enhanced absorption of poorly soluble drugs: I prescription design. / Journal of Controlled Release, 81(1-), 65-4. doi:10.1016/S0168-3659(02)00049-4 . CrossRef
    28. Letchford, K., & Burt, H. (2007). A review of the formation and classification of amphiphilic block copolymer nanoparticulate structures: micelles, nanospheres, nanocapsules and polymerosomes. / European Journal of Pharmaceutics and Biopharmaceutics, 65, 259-69. doi:10.1016/j.ejpb.2006.11.009 . CrossRef
    29. GuFX, K. R., WangAZ, A. F. E., et al. (2007). Targeted nanoparticles for cancer treatment. / Nano Today, 2, 14-1. doi:10.1016/S1748-0132(07)70083-X . CrossRef
    30. Tong, R., & Cheng, J. J. (2007). Anticancer polymeric nanomedicines. / Polymer Reviews, 47, 345-81. doi:10.1080/15583720701455079 . CrossRef
    31. Torchilin, V. P. (2005). Recent advances with liposomes as pharmaceutical carriers. / Nature Reviews. Drug Discovery, 4(2), 145-60. doi:10.1038/nrd1632 . CrossRef
    32. Torchilin, V. P. (2007). Micellar nanocarriers: pharmaceutical perspectives. / Pharmaceutical Research, 24(1), 1-6. doi:10.1007/s11095-006-9132-0 . CrossRef
    33. Merisko-Liversidge, E. M., & Liversidge, G. G. (2008). Drug nanoparticles: formulating poorly water-soluble compounds. / Toxicologic Pathology, 36(1), 43-8. doi:10.1177/0192623307310946 . CrossRef
    34. Hu, J., Johnston, K. P., Williams, R. O. (2004). Nanoparticle engineering processes for enhancing the dissolution rates of poorly water soluble drugs. / Drug Development and Industrial Pharmacy, 30(3), 233-45. doi:10.1081/DDC-120030422 . CrossRef
    35. Jani, P. U., Florence, A. T., McCarthy, D. E. (1992). Further histologicalevidence of the gastrointestinal absorption of polystyrene nanospheres in the rat. / International Journal of Pharmaceutics, 84, 245-52. doi:10.1016/0378-5173(92)90162-U . CrossRef
    36. Hillery, A. M., & Florence, A. T. (1996). The effect of adsorbed poloxamer 188 and 407 surfactants on the intestinal uptake of 60?nm polystyrene particles after oral administration in the rat. / International Journal of Pharmaceutics, 132, 123-30. doi:10.1016/0378-5173(95)04353-5 . CrossRef
    37. Rajput, G., Majmudar, F., Patel, J., Thakor, R., Rajqor, N. B. (2010). Stomach-specific mucoadhesive microsphere as a controlled drug delivery system. / Systemic Reviews in Pharmacy, 1(1), 70-8. doi:10.4103/0975-8453.59515 . CrossRef
    38. Peters, K., & Muller, R. H. (1998). Nanosuspensions for the formulation of poorly soluble drugs: I. Preparation by a size-reduction technique. / International Journal of Pharmaceutics, 160(2), 229-37. doi:10.1016/S0378-5173(97)00311-6 . CrossRef
    39. Langguth, P., Hanafy, A., Frenzel, D., Grenier, P., et al. (2005). Nanosuspension formulationsfor low-soluble drugs: pharmacokinetic evaluation using spironolactone as model compound. / Drug Development & Industry Pharmacy, 31(3), 319-21. doi:10.1081/DDC-52182 .
    40. Kocbek, P., Baumgartner, S., Kristl, J. (2006). Preparation and evaluationof nanosuspensions for enhancing the dissolution of poorly water-soluble drugs. / International Journal of Pharmaceutics, 312(1-), 179-86. doi:10.1016/j.ijpharm.2006.01.008 . CrossRef
    41. Horter, D., & Dressman, J. B. (2001). Influence of physicochemical propertieson dissolution of drugs in the gastrointestinal tract. / Advanced Drug Delivery Reviews, 46(1-), 75-7. doi:10.1016/S0169-409X(00)00130-7 . CrossRef
    42. Mamo, T., Moseman, E. A., Kolishetti, N., Salvador-Morales, C., et al. (2010). Emerging nanotechnology approaches for HIV/AIDS treatment and prevention. / Nanomedicine, 5(2), 269-85. doi:10.2217/nnm.10.1 . CrossRef
    43. Hanel, J. (2010). Biodegradable nanosized particles to deliver sustained-release medication cargo. Nanomedicine: nanomateral. / PNAS, 2009(106), 19268-9273. Published online: Azonano.com; The A to Z of nanotechnology.
    44. Soutter, W. (2012). Nanotechnology-based cancer treatment can reduce side effects. / Nanomedicine: nanomateral. Published online. Available at: http://www.azonano.com/news.aspx?newsID=25010. Last accessed on 25 Jun 2012
    45. Zhang, L., & Zhang, L. G. (2010). Lipid-polymer hybrid nanoparticles: synthesis, characterization and application. / Nano LIFE, 1(1-), 163-73. doi:10.1142/S179398441000016X . CrossRef
    46. Mahapatro, A., & Singh, D. K. (2011). Biodegradable nanoparticles are excellent vehicle for site directed in vivo delivery of drugs and vaccines. / Journal of Nanobiotechnology, 9, 55-7. doi:10.1186/1477-3155-9-55 . CrossRef
    47. Jong, W. H. D., & Borm, P. J. A. (2008). Drug delivery and nanoparticles: applications and hazards. / International Journal of Nanomedicine, 3(1), 133-49 PMCID: PMC2527668. CrossRef
    48. BormPJ, M.-S. D. (2006). Nanoparticles in drug delivery and environmental exposure: same size, same risk? / Nanomedicine, 1(2), 235-49. doi:10.2217/17435889.1.2.235 . CrossRef
    49. Labhasetwar, V., Song, C., Levy, R. J. (1997). Nanoparticle drug delivery system forrestenosis. / Advanced Drug Delivery Reviews, 24(1), 63-5. doi:10.1016/S0169-409X(96)00483-8 . CrossRef
    50. Langer, R. (2000). Biomaterials in drug delivery and tissue engineering: one laboratory’s experience. / Accounts of Chemical Research, 33(2), 94-01. doi:10.1021/ar9800993 . CrossRef
    51. Bhadra, D., Bhadra, S., Jain, P., Jain, N. K. (2003). A PEGylated dendritic nanoparticulate carrier of fluorouracil. / International Journal of Pharmaceutics, 257(1-), 111-24. doi:10.1016/S0378-5173(03)00132-7 . CrossRef
    52. Kommareddy, S., Tiwari, S. B., Amiji, M. M. (2005). Long-circulating polymeric nanovectors for tumor-selective gene delivery. / Technology in Cancer Research & Treatment, 4(6), 615-25.
    53. Hans, M. L., & Lowman, A. M. (2002). Biodegradable nanoparticles for drug delivery and targeting. / Current Opinion in Solid State and Materials Science, 6(4), 319-27. doi:10.1016/S1359-0286(02)00117-1 . CrossRef
    54. Sonia, T. A., & Sharma, C. P. (2011). Chitosan and its derivatives for drug delivery perspective. / Advances in Polymer Science, 243, 23-4. doi:10.1007/12_2011_117 . CrossRef
    55. Ubrich, N., Schmidt, C., Bodmeier, R., Hoffman, M., Maincent, P. (2005). Oral evaluation in rabbits of cyclosporin-loaded Eudragit RS or RL nanoparticles. / International Journal of Pharmaceutics, 288(1), 169-75. doi:10.1016/j.ijpharm.2004.09.019 . CrossRef
    56. Illum, L. (1998). Chitosan and its use as a pharmaceutical excipient. / Pharmaceutical Research, 15, 1326-331. doi:10.1023/A:1011929016601 . CrossRef
    57. Kreuter, J. (1994). Nanoparticles. In J. Kreuter (Ed.), / Colloidal drug delivery systems (pp. 261-76). New York: Marcel Dekker.
    58. Muller, R. H. (1991). / Colloidal carriers for controlled drug delivery and targeting, modification, characterization and in vivo distribution. Boston: CRC Press.
    59. Agnihotri, S. A., Mallikarjuna, N. N., Aminabhavi, T. M. (2004). Recent advances on chitosan-based micro- and nanoparticles in drug delivery. / Journal of Controlled Release, 100(1), 5-8. doi:10.1016/j.jconrel.2004.08.010 . CrossRef
    60. Prabaharan, M., & Mano, J. F. (2005). Chitosan-based particles as controlled drug delivery systems. / Drug Delivery, 12(1), 41-7. doi:10.1080/10717540590889781 . CrossRef
    61. Aspden, T. J., Mason, J. D., Jones, N. S. (1997). Chitosan as a nasal delivery system: the effect of chitosan solutions on in vitro and in vivo mucociliary transport rates in human turbinates and volunteers. / Journal of Pharmaceutical Sciences, 86(4), 509-13. doi:10.1021/js960182o . CrossRef
    62. Mao, H. Q., Troung-le, V. L., Janes, K. A., Roy, K., Wang, Y., August, J. T., Leong, K. W. (2001). Chitosan-DNA nanoparticles as gene carriers: synthesis, characterization and transfection efficiency. / Journal of Controlled Release, 70(3), 399-21. doi:10.1016/S0168-3659(00)00361-8 . CrossRef
    63. Wang, X., Chi, N., Tang, X. (2008). Preparation of estradiol chitosan nanoparticles for improving nasal absorption and brain targeting. / European Journal of Pharmaceutics and Biopharmaceutics, 70(3), 735-40. doi:10.1016/j.ejpb.2008.07.005 . CrossRef
    64. Calvo, et al. (1997). Novel hydrophilic chitosan-polyethylene oxide nanoparticles as protein carriers. / Journal of Applied Polymer Science, 63, 125-32. doi:0021-8995/97/010125-08 . CrossRef
    65. Bodmeier, R., Chen, H. G., Paeratakul, O. (1989). A novel approach to the oral delivery of micro- or nanoparticles. / Pharmaceutical Research, 6(5), 413-17. doi:10.1023/A:1015987516796 . CrossRef
    66. Pan, Y., Li, Y. J., Zhao, H. Y., Zheng, J. M., Xu, H., Wei, G., Hao, J. S., Cui, F. D. (2002). Bioadhesive polysaccharide in protein delivery system: chitosan nanoparticles improve the intestinal absorption of insulin in vivo. / International Journal of Pharmaceutics, 249(1-), 139-47. doi:10.1016/S0378-5173(02)00486-6 . CrossRef
    67. Dustgani, A., Fasahani, E. V., Imani, M. (2012). Preparation and in vitro characterization of chitosan nanoparticles containing / Mesobuthus eupeus scorpion venom as an antigen delivery system. / Journal of Venomous Animals and Toxins including Tropical Diseases, 18(1), 44-2. doi:10.1590/S1678-91992012000100006 .
    68. Shi, L. E., & Tang, Z. X. (2007). Adsorption of nuclease p1 on chitosan nano-particles. / Brazilian Journal of Chemical Engineering, 26(2), 223-28. doi:10.1590/S0104-66322009000200022 .
    69. Gan, Q., Wang, T., Cochrane, C., McCarron, P. (2005). Modulation of surface charge, particle size and morphological properties of chitosan–TPP nanoparticles intended for gene delivery. / Colloids and Surfaces B, 44(2-), 65-3. doi:10.1016/j.colsurfb.2005.06.001 . CrossRef
    70. Tsai, M. L., Bai, S. W., Chen, R. H. (2008). Cavitation effects versus stretch effects resulted in different size and polydispersity of ionotropic gelation chitosan-sodium tripolyphosphate nanoparticle. / Carbohydrate Polymers, 71(3), 448-57. CrossRef
    71. López-León, T., Carvalho, E. L., Seijo, B., Ortega-Vinuesa, J. L., Bastos-González, D. (2005). Physicochemical characterization of chitosan nanoparticles: electrokinetic and stability behavior. / Journal of Colloid and Interface Science, 283(2), 344-51. doi:10.1016/j.jcis.2004.08.186 . CrossRef
    72. Sarmento, B., Ribeiro, A. J., Veiga, F., Ferreira, D. (2007). Alginate/chitosan nanoparticles are effective for oral insulin delivery. / Pharmaceutical Research, 24(12), 2198-206. doi:10.1007/s11095-007-9367-4 . CrossRef
    73. Vila, A., Sánchez, A., Janes, K., Behrens, I., Kissel, T., Vila Jato, J. L., Alonso, M. J. (2004). Low molecular weight chitosan nanoparticles as new carriers for nasal vaccine delivery in mice. / The European Journal of Pharmaceutical, 57(1), 123-31. doi:10.1016/j.ejpb.2003.09.006 . CrossRef
    74. Fernandez-Urrusuno, R., Calvo, P., Remunan-Lopez, C., Vila-Jato, J. L., Alonso, M. J. (1999). Enhancement of nasal absorbtion of insulin using chitosan nanoparticles. / Pharmaceutical Research, 16, 1576-581. doi:10.1023/A:1018908705446 . CrossRef
    75. Aktas, Y., Andrieux, K., Alonso, M. J., Calvo, P., Gürsoy, R. N., Couvreur, P., Capan, Y. (2005). Preparation and in vitro evaluation of chitosan nanoparticles containing a caspase inhibitor. / International Journal of Pharmaceutics, 298, 378-83. doi:10.1016/j.ijpharm.2005.03.027 . CrossRef
    76. DeCampos, A. M., & Alonso, M. J. (2001). Chitosan nanoparticles: a new vehicle for the improvement of the delivery of drugs to the ocular surface: application to cyclosporine A. / International Journal of Pharmaceutics, 224(1-), 116-59. doi:10.1016/S0378-5173(01)00760-8 .
    77. Shu, X. Z., & Zhu, K. J. (2000). A novel approach to prepare tripolyphosphate/chitosan complex beads for controlled release drug delivery. / International Journal of Pharmaceutics, 201(1), 51-8. doi:10.1016/S0378-5173(00)00403-8 . CrossRef
    78. Cetin, M., Atila, A., Kadioglu, Y. (2010). Formulation and in vitro characterization of Eudragit? L100 and Eudragit? L100-PLGA nanoparticles containing diclofenac sodium. / AAPS PharmSciTech, 11(3), 1250-256. doi:10.1208/s12249-010-9489-6 . CrossRef
    79. Avadi, M. R., Sadeghi, A. M. M., Mohammadpour, N., et al. (2010). Preparation and characterization of insulin nanoparticles using chitosan and Arabic gum with ionic gelation method. / Nanomedicine: Nanotechnology, Biology and Medicine, 6(1), 58-3. doi:10.1016/j.nano.2009.04.007 . CrossRef
    80. Maitra, A. N., Ghosh, P. K., De, T. K., Sahoo, S. K. (1999) Process for the preparation of highly monodispersed hydrophilic polymeric nanoparticles of size less than 100?nm. US patent 5,874,111.
    81. Ohya, Y., Shiratani, M., Kobayashi, H., Ouchi, T. (1993). Release behavior of 5-fluorouracil from chitosan-gel nanospheres immobilizing 5-fluorouracil coated with polysaccharides and their cell specific cytotoxicity. / Journal of Microencapsulation, 10(1), 1-. doi:10.3109/02652049309015307 . CrossRef
    82. Goldberg, M., Langer, R., Jia, X. (2007). Nanostructured materials for applications in drug delivery and tissue engineering. / Journal of Biomaterials Science, Polymer Edition, 18(3), 241-68. doi:10.1163/156856207779996931 . CrossRef
    83. Mitra, S., Gaur, U., Ghosh, P. C., Maitra, A. N. (2001). Tumour targeted delivery of encapsulated dextran–doxorubicin conjugate using chitosan nanoparticles as carrier. / Journal of Controlled Release, 74(1-), 317-23. doi:10.1016/S0168-3659(01)00342-X . CrossRef
    84. Qu, J., Liu, G., Wang, Y., Hong, R. (2010). Preparation of Fe3O4-chitosan nanoparticles used for hyperthermia. / Advanced Powder Technology, 21(4), 461-67. doi:10.1016/j.apt.2010.01.008 . CrossRef
    85. Denuziere, A., Ferrier, D., Damour, O., Domard, A. (1998). Chitosan–chondroitin sulfate and chitosan–hyaluronate polyelectrolyte complexes: biological properties. / Biomaterials, 19(14), 1275-285. doi:10.1016/S0142-9612(98)00036-2 . CrossRef
    86. Chen, Y., Mohanraj, V. J., Parkin, J. E. (2003). Chitosan-dextran sulfate nanoparticles for delivery of an anti-angiogenesis peptide. / International Journal of Peptide Research and Therapeutics, 10(5-), 621-29. doi:10.1007/s10989-004-2433-4 . CrossRef
    87. Chen, Y., Mohanraj, V. J., Wang, F., Benson, H. A. E. (2007). Designing chitosan-dextran sulfate nanoparticles using charge ratios. / AAPS PharmSciTech, 8(4), 131-39. doi:10.1208/pt0804098 . CrossRef
    88. Ichikawa, S., Iwamoto, S., Watanabe, J. (2005). Formation of biocompatible nanoparticles by self-assembly of enzymatic hydrolysates of chitosan and carboxymethyl cellulose. / Bioscience, Biotechnology, and Biochemistry, 69(9), 1637-642. doi:10.1271/bbb.69.1637 . CrossRef
    89. Liu, Z., Jiao, Y., Liu, F., Zhang, Z. (2007). Heparin/chitosan nanoparticle carriers prepared by polyelectrolyte complexation. / Journal of Biomedical Materials Research Part A, 83(3), 806-12. doi:10.1002/jbm.a.31407 . CrossRef
    90. Tan, Q., Tang, H., Hu, J., Hu, Y., Zhou, X., Tao, Y., Wu, Z. (2011). Controlled release of chitosan/heparin nanoparticle-delivered VEGF enhances regeneration of decellularized tissue-engineered scaffolds. / International Journal of Nanomedicine, 6, 929-42. doi:10.2147/IJN.S18753 . CrossRef
    91. Tiyaboonchai, W., & Limpeanchob, N. (2007). Formulation and characterization of amphotericin B-chitosan-dextran sulfate nanoparticles. / International Journal of Pharmaceutics, 329(1-), 142-49. doi:10.1016/j.ijpharm.2006.08.013 . CrossRef
    92. Erbacher, P., Zou, S., Bettinger, T., Steffan, A. M., Remy, J. S. (1998). Chitosan-based vector/DNA complexes for gene delivery: biophysical characteristics and transfection ability. / Pharmaceutical Research, 15(9), 1332-339. doi:10.1023/A:1011981000671 . CrossRef
    93. Sarmento, B., Martins, S., Ribeiro, A., Veiga, F., Neufeld, R., Ferreira, D. (2006). Development and comparison of different nanoparticulate polyelectrolyte complexes as insulin carriers. / The International Journal of Peptide Research and Therapeutics, 12(2), 131-38. doi:10.1007/s10989-005-9010-3 . CrossRef
    94. Sadeghi, A. M., Dorkoosh, F. A., Avadi, M. R., Weinhold, M., et al. (2008). Permeation enhancer effect of chitosan and chitosan derivatives: comparison of formulations as soluble polymers and nanoparticulate systems on insulin absorption in Caco-2 cells. / European Journal of Pharmaceutics and Biopharmaceutics, 70(1), 270-78. doi:10.1016/j.ejpb.2008.03.004 . CrossRef
    95. Coppi, G., Iannuccelli, V., Leo, E., Bernabei, M. T., Cameroni, R. (2001). Chitosan-alginate microparticles as a protein carrier. / Drug Development and Industrial Pharmacy, 27(5), 393-00. doi:10.1081/DDC-100104314 . CrossRef
    96. Douglas, K. L., & Tabrizian, M. (2005). Effect of experimental parameters on the formation of alginate-chitosan nanoparticles and evaluation of their potential application as DNA carrier. / Journal of Biomaterials Science, 16(1), 43-6. doi:10.1163/1568562052843339 . CrossRef
    97. Sarmento, B., Ferreira, D., Veiga, F., Ribeiro, A. (2006). Characterization of insulin-loaded alginate nanoparticles produced by ionotropic pre-gelation through DSC and FTIR studies. / Carbohydrate Polymers, 66, 1-. doi:10.1016/j.carbpol.2006.02.008 . CrossRef
    98. Zhang, Y., Yang, W., Wang, C., Hu, J., Fu, S., Dong, L., Wu, L., Shen, X. (2007). Nanoparticles based on the complex of chitosan and polyaspartic acid sodium salt: preparation, characterization and the use for 5-fluorouracil delivery. / European Journal of Pharmaceutics and Biopharmaceutics, 67, 621-31. doi:10.1016/j.ejpb.2007.04.007 . CrossRef
    99. Zhang, D. Y., Shen, X. Z., Wang, J. Y., Dong, L., Zheng, Y. L., Wu, L. L. (2008). Preparation of chitosan-polyaspartic acid-5-fluorouracil nanoparticles and its anti-carcinoma effect on tumor growth in nude mice. / World Journal of Gastroenterology, 14, 3554-562. doi:10.3748/wjg.14.3554 . CrossRef
    100. Lee, J. E., Khan, S. A., Lim, K. H. Chitosan-nanoparticle preparationby polyelectrolyte complexation. 1-2. Available online: http://wjoe.hebeu.edu.cn/ICCE-17%20proceedings%20Hawaii%20USA/Lee,%20Eun-Ju%20%28Kyungpook%20Nat.U.,%20Daegu,%20Korea%29%20%20541.pdf. Accessed: 23 Jun 2012
    101. Mourao, P. A. S., & Pereira, M. S. (1999). Searching for alternatives to heparin: sulfated fucans from marine invertebrates. / Trends in Cardiovascular Medicine, 9, 225-32. doi:10.1016/S1050-1738(00)00032-3 . CrossRef
    102. Mi, F. L., Shyu, S. S., Kuan, C. Y., Lee, S. L., Lu, K. T., Jang, S. F. (1999). Chitosan–polyelectrolyte complexation for the preparation of gel beads and controlled release of anticancer drug. II. Effect of pH-dependent ionic crosslinking or interpolymer complex using tripolyphosphate or polyphosphate as reagent. / Journal of Applied Polymer Science, 74, 1093-107. doi:10.1002/(SICI)1097-4628(19991114)74:7<1868::AID-APP32>3.0.CO;2-N . CrossRef
    103. Singla, A. K., & Chawla, M. (2001). Chitosan: some pharmaceutical and biological aspects—an update. / The Journal of Pharmacy and Pharmacology, 53(8), 1047-067. doi:10.1211/0022357011776441 . CrossRef
    104. Tapia, C., Escobar, Z., Costa, E., Sapag-Hagar, J., Valenzuela, F., Basualto, C., Nella, G. M., Yazdano-Pedram, M. (2004). Comparative studies on polyelectrolyte complexes and mixtures of chitosan-alginate and chitosan-carrageenan as prolonged diltiazemclorhydrate release systems. / European Journal of Pharmaceutics and Biopharmaceutics, 57(1), 65-5. doi:10.1016/S0939-6411(03)00153-X . CrossRef
    105. Vila, A., Sanchez, A., Janes, K., Behrens, I., Kissel, T., Vila-Jato, J. L., Alonso, M. J. (2004). Low molecular weight chitosan nanoparticles as new carriers for nasal vaccine delivery in mice. / European Journal of Pharmaceutics and Biopharmaceutics, 57(1), 123-31. doi:10.1016/j.ejpb.2003.09.006 . CrossRef
    106. Borchard, G. (2001). Chitosan for gene delivery. / Advanced Drug Delivery Reviews, 52(2), 145-50. doi:10.1016/S0169-409X(01)00198-3 . CrossRef
    107. Thanou, M., Florea, B., Geldof, M., Junginger, H. E., Borchard, G. (2002). Quaternized chitosan oligomers as novel gene delivery vectors in epithelial cell lines. / Biomaterials, 23(1), 153-59. doi:10.1016/S0142-9612(01)00090-4 . CrossRef
    108. Nagasaki, T., Hojo, M., Uno, A., Satch, T., Koumoto, K., Mizu, M., Sakurai, K., Shinkai, S. (2004). Long-term expressionwith a cationic polymer derived from a natural polysaccharide: schizophyllan. / Bioconjugate Chemistry, 15(2), 249-59. doi:10.1021/bc034178x . CrossRef
    109. Mansouri, S., Lavigne, P., Corsi, K., Benderdour, M., Beaumont, E., Fernandes, J. C. (2004). Chitosan–DNA nanoparticles as non-viral vectors in gene therapy: strategies to improve transfection efficiency. / European Journal of Pharmaceutics and Biopharmaceutics, 57(1), 1-. doi:10.1016/S0939-6411(03)00155-3 . CrossRef
    110. Sashiwa, H., Thompson, J. M., Das, S. K., Shigenasa, Y., Tripathy, S., Roy, R. (2000). Chemical modification of chitosan: binding proprieties of a-galactosyl-chitosan conjugates. Potential inhibitors in acute rejection following xeno-transplantation. / Biomolecules, 1(3), 303-05. doi:10.1021/bm005536r .
    111. Sharma, A., Mondal, K., Gupta, M. N. (2003). Separation of enzymes by sequential macroaffinity ligand-facilitated three-phase partitioning. / Journal of Chromatography A, 995(1&2), 127-34. doi:10.1016/S0021-9673(03)00522-3 . CrossRef
    112. Sasaki, C., Kristiansen, A., Fukamizo, T., Varum, K. M. (2003). Biospecific fractionation of chitosan. / Biomolecules, 4(6), 1686-690. doi:10.1021/bm034124q .
    113. Park, S. I., & Zhao, Y. (2004). Incorporation of a high concentration of mineral or vitamin into chitosan-based films. / Journal of Agricultural and Food Chemistry, 52(7), 1933-939. doi:10.1021/jf034612p . CrossRef
    114. Silva, C. L., Pereira, J. C., Ramalho, A., Pais, A. A. C. C., Sousa, J. S. J. (2008). Films based on chitosan polyelectrolyte complexes for skin drug delivery: development and characterisation. / Journal of Membrane Science, 320, 268-79. doi:10.1016/j.memsci.2008.04.011 . CrossRef
    115. Ruel-Gariepy, E., Chenite, A., Chaput, C., Guirguis, S., Lerous, J. (2000). Characterization of thermosensitive chitosan gels for the sustained delivery of drugs. / International Journal of Pharmaceutics, 203(1-), 89-8. doi:10.1016/S0378-5173(00)00428-2 . CrossRef
    116. Ramanathan, S., & Block, L. H. (2001). The use of chitosan gels as matrices for electrically-modulated drug delivery. / Journal of Controlled Release, 70(1-), 109-23. doi:10.1016/S0168-3659(00)00333-3 . CrossRef
    117. Vinogradov, S. V., Bronich, T. K., Kabanow, A. V. (2002). Synthesis of nanogel carrier for delivery of active phosphorylated nucleoside analogues. / Advanced Drug Delivery Reviews, 54(1), 135-47. CrossRef
    118. Kofuji, K., Akamine, H., Qian, C. J., Watanaba, K., Togan, Y., Nishimura, M., Sugiyana, I., Murata, Y., Kawashima, S. (2004). Therapeutic efficacy of sustained drug release from chitosan gel on local inflammation. / International Journal of Pharmaceutics, 272(1-), 65-8. doi:10.1016/j.ijpharm.2003.11.036 . CrossRef
    119. Bergera, J., Reista, M., Mayera, J. M., Feltb, O., Gurny, R. (2004). Structure and interactions in chitosan hydrogels formed by complexation or aggregation for biomedical applications. / European Journal of Pharmaceutics and Biopharmaceutics, 57(1), 35-2. doi:10.1016/S0939-6411(03)00160-7 . CrossRef
    120. El-Shabouri, M. H. (2002). Positively charged nanoparticles for improving the oral bioavailability of cyclosporin-A. / International Journal of Pharmaceutics, 249, 101-08. doi:10.1016/S0378-5173(02)00461-1 . CrossRef
    121. Niwa, T., Takeuchi, H., Hino, T., Kunou, N., Kawashima, Y. (1994). In vitro drug release behavior of d , l -lactide/glycolide copolymer (PLGA) nanospheres with nafarelin acetate prepared by a novel spontaneous emulsification solvent diffusion method. / Journal of Pharmaceutical Sciences, 83(5), 727-32. doi:10.1002/jps.2600830527 . CrossRef
    122. Lim, S. T., Martin, G. P., Berry, D. J., Brown, M. B. (2000). Preparation and evaluation of the in vitro drug release properties and mucoadhesion of novel microspheres of hyaluronic acid and chitosan. / Journal of Controlled Release, 66(2-), 281-92. doi:10.1016/S0168-3659(99)00285-0 . CrossRef
    123. Jaganathan, K. S., Rao, Y. U., Singh, P., Prabakaran, D., Gupta, S., Jain, A., Vyas, S. P. (2005). Development of a single dose tetanus toxoid formulation based on polymeric microspheres: a comparative study of poly(d , l -lactic-co-glycolic acid) versus chitosan microspheres. / International Journal of Pharmaceutics, 294(1-), 23-2. doi:10.1016/j.ijpharm.2004.12.026 . CrossRef
    124. T?nnesen, H. H., & Karlsen, J. (2002). Alginate in drug delivery systems. / Drug Development and Industrial Pharmacy, 28(6), 621-30. doi:10.1081/DDC-120003853 . CrossRef
    125. Rajaonarivony, M., Vauthier, C., Couarraze, G., Puisieux, F., Couvreur, P. (1993). Development of a new drug carrier made from alginate. / Journal of Pharmaceutical Sciences, 82(8), 912-17. doi:10.1002/jps.2600820909 . CrossRef
    126. Pandey, R., Ahmad, Z., Sharma, S., Khuller, G. K. (2005). Nano-encapsulation of azole antifungals: potential applications to improve oral drug delivery. / International Journal of Pharmaceutics, 301(1-), 268-76. doi:10.1016/j.ijpharm.2005.05.027 . CrossRef
    127. Hoa, L. T. M., Chi, N. T., Triet, N. M., Nhan, L. N. T., Chien, D. M. (2009). Preparation of drug nanoparticles by emulsion evaporation method. / Journal of Physics Conference Series, 187, 1-. doi:10.1088/1742-6596/187/1/012047 .
    128. Bungenberg de Jong, H. G. (1949). A survey of the study objects in this volume. In H. R. Kruyt (Ed.), / Colloid science vol II (pp. 1-8). Amsterdam: Elsevier.
    129. Okhamafe, A. O., Amsden, B., Chu, W., Goosen, M. F. A. (1996). Modulation of protein release from chitosan-alginate microcapsules using pH- sensitive polymer hydroxypropyl methylcellulose acetate succinate. / Journal of Microencapsulation, 13(5), 497-08. doi:10.3109/02652049609026035 . CrossRef
    130. Mooren, F. C., & Berthold, A. (1998). Influence of chitosan microspheres on the transport of prednisone sodium phosphate across HT-29 cell monolayers. / Pharmaceutical Research, 15(1), 58-5. doi:10.1023/A:1011996619500 . CrossRef
    131. Sonvico, F., Cagnani, A., Rossi, A., Motta, S., Di Bari, M. T., Cavatorta, F., Alonso, M. J., Deriu, A., et al. (2006). Formation of self-organized nanoparticles by lecithin/chitosan ionic interaction. / The International Journal of Pharmaceutics, 324(1), 67-3. doi:10.1016/j.ijpharm.2006.06.036 . CrossRef
    132. Leong, K. W., Mao, H. Q., Truong-Le, V. L., Roy, K., Walsh, S. M., August, J. T. (1998). DNA-polycation nanospheres as non-viral gene delivery vehicles. / Journal of Controlled Release, 53(1-), 183-93. doi:10.1016/S0168-3659(97)00252-6 . CrossRef
    133. Roy, K., Mao, H. Q., Huang, S. K., Leong, K. W. (1999). Oral gene delivery with chitosan–DNA nanoparticles generates immunologic protection in a murine model of peanut allergy. / Nature Medicine, 5(4), 387-91. doi:10.1038/7385 . CrossRef
    134. Bhattarai, N., Ramay, H. R., Chou, S. H., Zhang, M. (2006). Chitosan and lactic acid-grafted chitosan nanoparticles as carriers for prolonged drug delivery. / International Journal of Nanomedicine, 1(2), 181-87. doi:10.2147/nano.2006.1.2.18 . CrossRef
    135. Tien, C. L., Lacroix, I.-S. P., Mateescu, M. A. (2003). / N-acylated chitosan: hydrophobic matrices for controlled drug release. / Journal of Controlled Release, 93(1), 1-3. doi:10.1016/S0168-3659(03)00327-4 . CrossRef
    136. Yoo, H. S., Lee, J. E., Chung, H., Kwon, I. C., Jeong, S. Y. (2005). Self -assembled nanoparticles containing hydrophobically modified glycol chitosan for gene delivery. / Journal of Controlled Release, 103(1), 235-43. doi:10.1016/j.jconrel.2004.11.033 . CrossRef
    137. Park, J. H., Kwon, S., Nam, J. O., et al. (2005). Self-assembled nanoparticles based on glycol chitosan bearing 5 β-cholanic acid for RGD peptide delivery. / Journal of Controlled Release, 95(3), 579-88. doi:10.1016/j.jconrel.2003.12.020 . CrossRef
    138. Zhang, J., Chen, X. G., Li, Y. Y., Liu, C. S. (2007). Self-assembled nanoparticles based on hydrophobically modified chitosan as carriers for doxorubicin. / Nanomedicine, 3(4), 258-65. doi:10.1016/j.nano.2007.08.002 . CrossRef
    139. Kim, J. H., Kim, Y. S., Park, K., et al. (2008). Antitumor efficacy of cisplatin-loaded glycol chitosan nanoparticles in tumor-bearing mice. / Journal of Controlled Release, 127(1), 41-9. doi:10.1016/j.jconrel.2007.12.014 . CrossRef
    140. Chen, C. C., Tsai, T. H., Huang, Z. R., Fang, J. F. (2010). Effects of lipophilic emulsifiers on the oral administration of lovastatin from nanostructured lipid carriers: physicochemical characterization and pharmacokinetics. / European Journal of Pharmaceutics and Biopharmaceutics, 74(3), 474-82. doi:10.1016/j.ejpb.2009.12.008 . CrossRef
    141. Müller, R. H., Petersen, R. D., Hommoss, A., Pardeike, J. (2007). Nanostructured lipid carriers (NLC) in cosmetic dermal products. / Advanced Drug Delivery Reviews, 59(6), 522-30. doi:10.1016/j.addr.2007.04.012 . CrossRef
    142. Mo, Y., & Lim, L. (2004). Mechanistic study of the uptake of wheat germ agglutinin-conjugated PLGA nano particles by A549 cells. / Journal of Pharmaceutical Sciences, 93(1), 20-8. doi:10.1002/jps.10507 . CrossRef
    143. Yeh, T. K., Lu, Z., Wientjes, M. G., Au, J. L.-S. (2005). Formulating paclitaxel in nanoparticles alters its disposition. / Pharmaceutical Research, 22(6), 867-74. doi:10.1007/s11095-005-4581-4 . CrossRef
    144. Stevens, P. J., Sekido, M., Lee, R. J. (2004). Synthesis and evaluation of a hematoporphyrin derivative in a folate receptor-targeted solid–lipid nanoparticle formulation. / Anticancer Research, 24(1), 161-65. doi:0250-7005/2004$2.00+.40 .
    145. Stevens, P. J., Sekido, M., Lee, R. J. (2004). A folate receptor-targeted lipid nanoparticle formulation for a lipophilic paclitaxel prodrug. / Pharmaceutical Research, 21(12), 2153-157. doi:10.1007/s11095-004-7667-5 . CrossRef
    146. Wu, J., Xiaobin, Z., Lee, R. J. (2007). Lipid-based nanoparticulate drug delivery systems. In D. Thassu, M. Deleers, & Y. Pathak (Eds.), / Nanoparticulate drug delivery systems (1st ed.). New York: Informa Healthcare USA, Inc.
    147. Puri, A., Loomis, K., Smith, B., et al. (2009). Lipid-based nanoparticles as pharmaceutical drug carriers: from concepts to clinic. / Critical Reviews in Therapeutic Drug Carrier Systems, 26(6), 523-80. CrossRef
    148. Wissing, S. A., & Muller, R. H. (2003). The influence of solid lipid nanoparticles on skin hydration and viscoelasticity—in vivo study. / European Journal of Pharmaceutics and Biopharmaceutics, 56(1), 67-2. doi:10.1016/j.addr.2003.12.002 . CrossRef
    149. Wissing, S. A., Kayser, O., Muller, R. H. (2004). Solid lipid nanoparticles for parenteral drug delivery. / Advanced Drug Delivery Reviews, 56(9), 1257-272. doi:10.1016/j.addr.2003.12.002 . CrossRef
    150. Heurtault, B., Saulnier, P., Pech, B., Proust, J. E., Benoit, J. P. (2002). A novel phase inversion-based process for the preparation of lipid nanocarriers. / Pharmaceutical Research, 19(6), 875-80. doi:10.1023/A:1016121319668 . CrossRef
    151. Charcosset, C., El-Harati, A., Fessi, H. (2005). Preparation of solid lipid nanoparticles using a membrane contactor. / Journal of Controlled Release, 108(1), 112-20. doi:10.1016/j.jconrel.2005.07.023 . CrossRef
    152. Schwarz, C., Mehnert, W., Lucks, J. S., Muller, R. H. (1994). Solid lipid nanoparticles (SLN) for controlled drug delivery: I. Production, characterization and sterilization. / Journal of Controlled Release, 30, 83-6. doi:10.1016/0168-3659(94)90047-7 . CrossRef
    153. Westesen, K., Bunjes, H., Koch, M. H. J. (1997). Physicochemical characterization of lipid nanoparticles and evaluation of their drug loading capacity and sustained release potential. / Journal of Controlled Release, 48, 223-36. doi:10.1016/S0168-3659(97)00046-1 . CrossRef
    154. Uner, M., & Yener, G. (2007). Importance of solid lipid nanoparticles (SLN) in various administration routes and future perspectives. / International Journal of Nanomedicine, 2(3), 289-00.
    155. Liu, Z., Zhang, X., Wu, H., Li, J., Shu, L., Liu, R., Li, L., Li, N. (2011). Preparation and evaluation of solid lipid nanoparticles of baicalin for ocular drug delivery system in vitro and in vivo. / Drug Development and Industrial Pharmacy, 37(4), 475-81. doi:10.3109/03639045.2010.522193 . CrossRef
    156. Montenegro, L., Campisi, A., Sarpietro, M. G., et al. (2011). In vitro evaluation of idebenone-loaded solid lipid nanoparticles for drug delivery to the brain. / Drug Dev Ind Pharm, 37(6), 737-46. CrossRef
    157. Seyfoddin, A., Shaw, J., Al-Kassas, R. (2010). Solid lipid nanoparticles for ocular drug delivery. / Drug Delivery, 17(7), 467-89. doi:10.3109/10717544.2010.483257 . CrossRef
    158. Serpe, L., Canaparo, R., Daperno, M., Sostegni, R., Martinasso, G., Muntoni, E., Ippolito, L., Vivenza, N., Pera, A., Eandi, M., Gasco, M. R., Zara, G. P. (2010). Solid lipid nanoparticles as anti-inflammatory drug delivery system in a human inflammatory bowel disease whole-blood model. / European Journal of Pharmaceutical Sciences, 39(5), 428-36. doi:10.1016/j.ejps.2010.01.013 . CrossRef
    159. Zhang, X. G., Miao, J., Dai, Y. Q., Du, Y. Z., Yuan, H., Hu, F. Q. (2008). Reversal activity of nanostructured lipid carriers loading cytotoxic drug in multi-drug resistant cancer cells. / International Journal of Pharmaceutics, 361(1-), 239-44. doi:10.1016/j.ijpharm.2008.06.002 . CrossRef
    160. Teeranachaideekul, V., Muller, R. H., Junyaprasert, V. B. (2007). Encapsulation of ascorbylpalmitate in nanostructured lipid carriers (NLC)—effects of formulation parameters on physicochemical stability. / International Journal of Pharmaceutics, 340(1-), 198-06. doi:10.1016/j.ijpharm.2007.03.022 . CrossRef
    161. Yuan, H., Wang, L. L., Du, Y. Z., You, J., Hu, F. Q., Zeng, S. (2007). Preparation and characteristics of nanostructured lipid carriers for control-releasing progesterone by melt-emulsification. / Colloids and Surfaces. B, Biointerfaces, 60(2), 174-79. doi:10.1016/j.colsurfb.2007.06.011 . CrossRef
    162. Jenning, V., Thunemann, A. F., Gohla, S. H. (2000). Characterization of a novel solid lipid nanoparticle carrier system based on binary mixtures of liquid and solid lipids. / International Journal of Pharmaceutics, 1999, 167-77. doi:10.1016/S0378-5173(00)00378-1 . CrossRef
    163. Jenning, V., Mader, K., Gohla, S. H. (2000). Solid lipid nanoparticles (SLN) based on binary mixtures of liquid and solid lipids: a1H-NMR study. / International Journal of Pharmaceutics, 205, 15-1. doi:10.1016/S0378-5173(00)00462-2 . CrossRef
    164. Joshi, M., & Patravale, M. (2006). Formulation and evaluation of nanostructured lipid carrier (NLC)-based gel of Valdecoxib. / Drug Development and Industrial Pharmacy, 32(8), 911-18. CrossRef
    165. Ge?ner, A., Olbrich, C., Schroder, W., Kayser, O., Muller, R. H. (2001). The role of plasma proteins in brain targeting: species dependent protein adsorption patterns on brain-specific lipid drug conjugate (LDC) nanoparticles. / International Journal of Pharmaceutics, 214(1-), 87-1. doi:10.1016/S0378-5173(00)00639-6 . CrossRef
    166. Thevenot, J., TroutierAL, D. L., Delair, T., Ladaviere, C. (2007). Steric stabilization of lipid/polymer particle assemblies by poly(ethylene glycol)-lipids. / Biomacromolecules, 8, 3651-660. doi:10.1021/bm700753q . CrossRef
    167. Zhang, L., Chan, J. M., Gu, F. X., Rhee, J. W., Wang, A. Z., Radovic-Moreno, A. F., et al. (2008). Self-assembled lipid–polymer hybrid nanoparticles: a robust drug delivery platform. / ACS Nano, 2, 1696-702. doi:10.1021/nn800275r . CrossRef
    168. Chan, J. M., Zhang, L. F., Tong, R., Ghosh, D., Gao, W., et al. (2010). Spatio-temporal controlled delivery of nanoparticles to injured vasculature. / Proceedings of the National Academy of Sciences, 107(5), 2213-218. doi:10.1073/pnas.0914585107 . CrossRef
    169. Yadav, K. S., & Sawant, K. K. (2010). Modified nanoprecipitation method for preparation of cytarabine-loaded PLGA nanoparticles. / AAPS PharmSciTech, 11(3), 1456-465. doi:10.1208/s12249-010-9519-4 . CrossRef
    170. Fang, R. H., Aryal, S., Hu, C. M., Zhang, L. (2010). Quick synthesis of lipid-polymer hybrid nanoparticles with low polydispersity using a single-step sonication method. / Langmuir, 26(22), 16958-6962. doi:10.1021/la103576a . CrossRef
    171. Ling, G., Zhang, P., Zhang, W., Sun, J., et al. (2010). Development of novel self-assembled DS-PLGA hybrid nanoparticles for improving oral bioavailability of vincristine sulfate by P-gp inhibition. / Journal of Controlled Release, 148(2), 241-48. doi:10.1016/j.jconrel.2010.08.010 . CrossRef
    172. Wang, A. Z., Gu, F., Zhang, L., Chan, J. M., Radovic-Moreno, A., Shaikh, M. R., Farokhzad, O. C. (2008). Biofunctionalized targeted nanoparticles for therapeutic applications. / Expert Opinion on Biological Therapy, 8(8), 1063-070. doi:10.1517/14712598.8.8.1063 . CrossRef
    173. Hu, C. M. J., Kaushal, S., Cao, H. S. T., Aryal, S., Sartor, M., et al. (2010). Half-antibody functionalized lipid-polymer hybrid nanoparticles for targeted drug delivery to carcino embryonic antigen (CEA) presenting pancreatic cancer cells. / Molecular Pharmaceutics, 7(3), 914-20. doi:10.1021/mp900316a . CrossRef
    174. Li, J., Ying-zi He, Y., Li, W., Shen, Y., Li, Y., Wang, Y. (2010). A novel polymer–lipid hybrid nanoparticle for efficient non-viral gene delivery. / Acta Pharmacologica Sinica, 31, 509-14. doi:10.1038/aps.2010.15 . CrossRef
    175. Sengupta, S., Eavarone, D., Capila, I., Zhao, G., Watson, N., Kiziltepe, T., Sasisekharan, R. (2005). Temporal targeting of tumour cells and neovasculature with a nanoscale delivery system. / Nature, 436(7050), 568-72. doi:10.1038/nature03794 . CrossRef
    176. Yiu, T., Li, K., Li, P. J., Liu, B., Feng, S. S. (2010). Folic acid conjugated nanoparticles of mixed lipid monolayer shell and biodegradable polymer core for targeted delivery of Docetaxel. / Biomaterials, 31, 330-38. doi:10.1016/j.biomaterials.2009.09.036 . CrossRef
    177. Salvador-Morales, C., Zhang, L., Langer, R., Farokhzad, O. C. (2009). Immunocompatibility properties of lipid–polymer hybrid nanoparticles with heterogeneous surface functional groups. / Biomaterials, 30, 2231-240. doi:10.1016/j.biomaterials.2009.01.005 . CrossRef
    178. Panyam, J., & Labhasetwar, V. (2003). Biodegradable nanoparticles for drug and gene delivery to cells and tissue. / Advanced Drug Delivery Reviews, 55(3), 329-47. doi:10.1016/S0169-409X(02)00228-4 . CrossRef
    179. Desai, M. P., Labhasetwar, V., Walter, E., Levy, R. J., Amidon, G. L. (1997). The mechanism of uptake of biodegradable microparticles in Caco-2 cells is size dependent. / Pharmaceutical Research, 14(11), 1568-573. doi:10.1023/A:1012126301290 . CrossRef
    180. Desai, M. P., Labhasetwar, V., Amidon, G. L., Levy, R. J. (1996). Gastrointestinal uptake of biodegradable microparticles: effect of particle size. / Pharmaceutical Research, 13(12), 1838-845. doi:10.1023/A:1016085108889 . CrossRef
    181. Zauner, W., Farrow, N. A., Haines, A. M. (2001). In vitro uptake of polystyrene microspheres: effect of particle size, cell line and cell density. / Journal of Controlled Release, 71(1), 39-1. doi:10.1016/S0168-3659(00)00358-8 . CrossRef
    182. Redhead, H. M., Davis, S. S., Illum, L. (2001). Drug delivery in poly(lactide-co-glycolide) nanoparticles surface modified with poloxamer 407 and poloxamine 908: in vitro characterisation and in vivo evaluation. / Journal of Controlled Release, 70(3), 353-63. doi:10.1023/A:1022604120952 . CrossRef
    183. Dwibhashyam, V. S. N. M., & Nagappa, A. N. (2008). Strategies for enhanced drug delivery to the central nervous system. / Indian Journal of Pharmaceutical Sciences, 70(2), 145-53. doi:10.4103/0250-474X.41446 . CrossRef
    184. Kreuter, J., Ramge, P., Petrov, V., Hamm, S., Gelperina, S. E., Engelhardt, B., Alyautdin, R., von Briesen, H., Begley, D. J. (2003). Direct evidence that polysorbate-80-coated poly(butylcyanoacrylate) nanoparticles deliver drugs to the CNS via specific mechanisms requiring prior binding of drug to the nanoparticles. / Pharmaceutical Research, 20(3), 409-16. doi:10.1023/A:1022604120952 . CrossRef
    185. Jores, K., Mehnert, W., Mader, K. (2003). Physicochemical investigations on solid–lipid nanoparticles and on oil loaded solid–lipid nanoparticles: a nuclear magnetic resonance and electron spin resonance study. / Pharmaceutical Research, 20, 1274-283. doi:10.1023/A:1025065418309 . CrossRef
    186. Maestrell, F., Mura, P., Alonso, M. J. (2004). Formulation and characterization of triclosan sub-micronemulsions and nanocapsules. / Journal of Microencapsulation, 21(8), 857-64. doi:10.1080/02652040400015411 . CrossRef
    187. Lochmann, D., Vogel, V., Weyermann, J., et al. (2004). Physicochemical characterization of protamine-phosphorothioate nanoparticles. / Journal of Microencapsulation, 21(6), 625-41. doi:10.1080/02652040400000504 . CrossRef
    188. Geze, A., Putaux, J. L., Choisnard, L., Jehan, P., Wouessidjewe, D. (2004). Long term shelf stability of amphiphilic B-cyclodextrin nanospheres suspensions monitored by dynamic light scattering and cryo-transmission electron microscopy. / Journal of Microencapsulation, 21, 607-13. doi:10.1080/02652040400008457%20 . CrossRef
    189. Wang, X., Dai, J., Chen, Z., et al. (2004). Bioavailability and pharmacokinetics of cyclosporine A loaded pH-sensitive nanoparticles for oral administration. / Journal of Controlled Release, 97, 421-29. doi:10.1016/j.jconrel.2004.03.003 .
    190. Muniyappan, S. V. T., Karatgi, P., Prabu, R., Pillai, R. (2008). Production and in vitro characterization of solid dosage form incorporating drug nanoparticles. / Drug Development and Industrial Pharmacy, 34(11), 1209-218. doi:10.1080/03639040802005024 . CrossRef
    191. Yoo, H. S., & Park, T. G. (2004). Biodegradable nanoparticles containing protein–fatty acid complexes for oral delivery of salmon calcitonin. / Journal of Pharmaceutical Sciences, 93, 488-95. doi:10.1002/jps.10573 . CrossRef
    192. Alphandary, H. P., Aboubaker, M., Jaillard, D., Couvreur, P., Vauthier, C. (2003). Visualization of insulin loaded nanocapsules: in vitro and in vivo studies after oral administration to rats. / Pharmaceutical Research, 20(7), 1071-084. doi:10.1023/A:1024470508758 . CrossRef
    193. Alexis, F., Pridgen, E., Molnar, L. K., Farokhzad, O. C. (2008). Factors affecting the clearance and biodistribution of polymeric nanoparticles. / Molecular Pharmaceutics, 5(4), 505-15. doi:10.1021/mp800051m . CrossRef
    194. Bershteyn, A., Chaparro, J., Yau, R., Kim, M., Reinherz, E., et al. (2008). Polymer-supported lipid shells, onions, and flowers. / Soft Matter, 4(9), 1787-791. doi:10.1039/b804933e . CrossRef
    195. Govender, T., Stolnik, S., Garnett, M. C., Illum, L., Davis, S. S. (1999). PLGA nanoparticles prepared by nanoprecipitation: drug loading and release studies of a water soluble drug. / Journal of Controlled Release, 57(2), 171-85. doi:10.1016/S0168-3659(98)00116-3 . CrossRef
    196. Govender, T., Riley, T., Ehtezazi, T., Garnett, M. C., Stolnik, S., Illum, L., Davis, S. S. (2000). Defining the drug incorporation properties of PLA–PEG nanoparticles. / International Journal of Pharmaceutics, 199(1), 95-10. doi:10.1016/S0378-5173(00)00375-6 . CrossRef
    197. Chen, Y., McCulloch, R. K., Gray, B. N. (1994). Synthesis of albumin-dextran sulfate microspheres possessing favourable loading and release characteristics for the anti-cancer doxorubicin. / Journal of Controlled Release, 31(1), 49-4. doi:10.1016/0168-3659(94)90250-X . CrossRef
    198. Peracchia, M., Gref, R., Minamitake, Y., Domb, A., Lotan, N., Langer, R. (1997). PEG-coated nanospheres from amphiphillic diblock and multiblock copolymers: investigation of their drug encapsulation and release characteristics. / Journal of Controlled Release, 46(3), 223-31. doi:10.1016/S0168-3659(96)01597-0 . CrossRef
    199. Aryal, S., Hu, C. M. J., Zhang, L. F. (2010). Polymer–cisplatin conjugate nanoparticles for acid-responsive drug delivery. / ACS Nano, 4, 251-58. doi:10.1021/nn9014032 . CrossRef
    200. Kundu, J., Chung, Y. I., Kim, Y. H., Taeb, G., Kundu, S. C. (2010). Silk fibroin nanoparticles for cellular uptake and control release. / International Journal of Pharmaceutics, 388(1-), 242-50. doi:10.1016/j.ijpharm.2009.12.052 . CrossRef
    201. Kaul, G., & Amiji, M. (2002). Long-circulating poly(ethylene glycol)-modified gelatin nanoparticles for intracellular delivery. / Pharmaceutical Research, 19(7), 1061-067. doi:10.1023/A:1016486910719 . CrossRef
    202. Nam, H. Y., Kwon, S. M., Chung, H., et al. (2009). Cellular uptake mechanism and intracellular fate of hydrophobically modified glycol chitosan nanoparticles. / Journal of Controlled Release, 135(3), 259-67. doi:10.1016/j.jconrel.2009.01.018 . CrossRef
    203. Jeong, Y. I., Jin, S. G., Kim, I. Y., et al. (2010). Doxorubicin-incorporated nanoparticles composed of poly(ethylene glycol)-grafted carboxymethyl chitosan and antitumor activity against glioma cells in vitro. / Colloids and Surfaces B, 79(1), 149-55. doi:10.1016/j.colsurfb.2010.03.037 . CrossRef
    204. Verdun, C., Brasseur, F., Vranckx, H., Couvreur, P., Roland, M. (1990). Tissue distribution of doxorubicin associated with polyhexylcyanoacrylate nanoparticles. / Cancer Chemotherapy and Pharmacology, 26(1), 13-8. doi:10.1007/BF0294028 . CrossRef
    205. Storm, G., Belliot, S., Daemen, T., Lasic, D. (1995). Surface modification of nanoparticles to oppose uptake by the mononuclear phagocyte system. / Advanced Drug Delivery Reviews, 17, 31-8. doi:10.1016/0169-409X(95)00039-A . CrossRef
    206. Jeon, S. I., Lee, J. H., Andrade, J. D., De Gennes, P. G. (1991). Protein-surface interactions in the presence of polyethylene oxide: I. Simplified theory. / Journal of Colloid and Interface Science, 142, 149-58. doi:10.1016/0021-9797(91)90043-8 . CrossRef
    207. Stella, B., Arpicco, S., Peracchia, M., Desmaele, D., Hoebeke, J., Renoir, M., Angelo, J., Cattel, L., Couvreur, P. (2000). Design of folic acid-conjugated nanoparticles for drug targeting. / Journal of Pharmaceutical Sciences, 89(11), 1452-464. doi:10.1002/1520-6017(200011)89:11<1452::AID-JPS8>3.0.CO;2-P . CrossRef
    208. Larsen, A. K., Escargueil, A. E., Skladanowski, A. (2000). Resistance mechanisms associated with altered intracellular distribution of anticancer agents. / Pharmacology and Therapeutics, 85(3), 217-29. doi:10.1016/S0163-7258(99)00073-X . CrossRef
    209. Bennis, S., Chapey, C., Couvreur, P., Robert, J. (1994). Enhanced cytotoxicity of doxorubicin encapsulated in polyisohexylcyanoacrylate nanospheres against multidrug-resistant tumour cells in culture. / European Journal of Cancer, 30A(1), 89-3. CrossRef
    210. Damge, C., Michel, C., Aprahamian, M., Couvreur, P., Devissaguet, J. P. (1990). Nanocapsules as carriers for oral peptide delivery. / Journal of Controlled Release, 13, 233-39. doi:10.1016/0168-3659(90)90013-J . CrossRef
    211. Brandtzaeg, P., Berstad, A., Farstad, I., Haraldsen, G., Helgeland, L., Jahnsen, F., Johansen, F., Natvig, I., Nilsen, E., Rugtveit, J. (1997). Mucosal immunity—a major adaptive defense mechanism. / Behring Institute Mitteilungen, 98(1), 1-3.
    212. Moghimi, S. M., Hunter, A. C., Murray, J. C. (2001). Long-circulating and target-specific nanoparticles: theory to practice. / Pharmacological Reviews, 53, 283-18. doi:0031-6997/01/5302-283-318$3.00 .
    213. Bromberg, L. E., Ron, E. S. (1998). Temperature-responsive gels and thermogelling polymer matrices for protein and peptide delivery. / Advanced Drug Delivery Reviews, 31(3), 197-21. doi:10.1016/S0169-409X(97)00121-X . CrossRef
    214. Haltner, E., Easson, J., Lehr, C. (1997). Lectins and bacterial invasion factors for controlling endo- and transcytosis of bioadhesive drug carrier systems. / European Journal of Pharmaceutics and Biopharmaceutics, 44, 3-3. CrossRef
    215. Hussain, N., Jani, P. U., Florence, A. T. (1997). Enhanced oral uptake of tomato lectin-conjugated nanoparticles in the rat. / Pharmaceutical Research, 14(5), 613-18. doi:10.1023/A:1012153011884 . CrossRef
    216. Russell-Jones, G. J., Arthur, L., Walker, H. (1999). Vitamin B12-mediated transport of nanoparticles across Caco-2 cells. / International Journal of Pharmaceutics, 179(2), 247-55. doi:10.1016/S0378-5173(98)00394-9 . CrossRef
    217. Veiseh, O., Sun, C., Fang, C., Bhattarai, N., Gunn, J., Kievit, F., Du, K., Pullar, B., Lee, D., Ellenbogen, R. G., Olson, J., Zhang, M. (2009). Specific targeting of brain tumors with an optical/magnetic resonance imaging nanoprobe across the blood–brain barrier. / Cancer Research, 69, 6200-207. CrossRef
    218. Patel, M. M., Goyal, B. R., Bhadada, S. V., Bhatt, J. S., Amin, A. F. (2009). Getting into the brain: approaches to enhance brain drug delivery. / CNS Drugs, 23(1), 35-8. doi:10.2165/0023210-200923010-00003 . CrossRef
    219. Lockman, P. R., Koziara, J. M., Mumper, R. J., et al. (2004). Nanoparticle surface charges alter blood–brain barrier integrity and permeability. / Journal of Drug Targeting, 12(9-0), 635-41. doi:10.1080/10611860400015936 . CrossRef
    220. Costantino, L., Gandolfi, F., Tosi, G., Rivasi, F., Vandelli, M. A., Forni, F. (2005). Peptide-derivatized biodegradable nanoparticles able to cross the blood–brain barrier. / Journal of Controlled Release, 108(1), 84-6. doi:10.1016/j.jconrel.2005.07.013 . CrossRef
    221. Tahara, K., Miyazaki, Y., Kawashima, Y., Kreuter, J., Yamamoto, H. (2011). Brain targeting with surface-modified poly(d , l -lactic-co-glycolic acid) nanoparticles delivered via carotid artery administration. / European Journal of Pharmaceutics and Biopharmaceutics, 77(1), 84-8. doi:10.1016/j.ejpb.2010.11.002 . CrossRef
    222. Cho, K., Wang, X., Nie, S., et al. (2008). Therapeutic nanoparticles for drug delivery in cancer. / Clinicalo Cancer Research, 14(5), 1310-316. doi:10.1158/1078-0432.CCR-07-1441 . CrossRef
  • 作者单位:Sandeep Kumar (1)
    Neeraj Dilbaghi (1)
    Ruma Saharan (1)
    Gaurav Bhanjana (1)

    1. Nanomaterials Synthesis & Characterization Laboratory, Department of Bio & Nano Technology, Guru Jambheshwar University of Science and Technology, Hisar, 125001, India
  • ISSN:2191-1649
文摘
In the past few decades, nanotechnology has been used to develop various nano-based systems to facilitate the delivery of therapeutic and imaging agents for various medical applications. Nanoparticulate drug delivery systems have been used to modify and improve the pharmacokinetic and pharmacodynamics properties of various drugs used in therapeutic application. According to material of delivery vehicle used for the nanoparticles, they have been categorized as polymer-based nanoparticles, lipid-based nanoparticles, and lipid–polymer hybrid nanoparticles. Earlier, two types represent two primary delivery vehicles with lot of application in different fields but some intrinsic limitations remain to limit their application at certain extent. The later one have been demonstrated to include the unique advantages of both lipid-based nanoparticles and polymer-based nanoparticles while excluding some of their intrinsic limitations, thereby holding great promise as a delivery vehicle for various medical applications. In this review, we first introduce nanoparticles, method of preparation, and their types based on delivery vehicle followed by characteristics which affect the nanoparticle formulation. Finally, we summarize the potential medical application of the nanoparticles.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700