Morphological features and lipopolysaccharide attachment of coliphages specific to Escherichia coli O157:H7 and to a broad range of E. coli hosts
详细信息    查看全文
  • 作者:Eun-Jin Kim ; Heyn Lee ; Ju-Hoon Lee ; Sangryol Ryu…
  • 关键词:Bacteriophage ; E. coli O157 ; H7 ; Tail ; Receptor ; Lipopolysaccharide
  • 刊名:Journal of the Korean Society for Applied Biological Chemistry
  • 出版年:2016
  • 出版时间:February 2016
  • 年:2016
  • 卷:59
  • 期:1
  • 页码:109-116
  • 全文大小:3,092 KB
  • 参考文献:Ackermann HW (2009a) Basic phage electron microscopy. In: Clokie MRJ, Kropinski AM (eds) Bacteriophages, 1st edn. Humana Press, UK, pp 113–126CrossRef
    Ackermann HW (2009b) Phage classification and characterization. In: Clokie MRJ, Kropinski AM (eds) Bacteriophages, 1st edn. Humana Press, UK, pp 127–140CrossRef
    Austin EA, Graves JF, Hite LA, Parker CT, Schnaitman CA (1990) Genetic analysis of lipopolysaccharide core biosynthesis by Escherichia coli K-12: insertion mutagenesis of the rfa locus. J Bacteriol 172:5312–5325
    Bebeacua C, Lai L, Vegge CS, Brøndsted L, van Heel M, Veesler D, Cambillau C (2013) Visualizing a complete Siphoviridae member by single-particle electron microscopy: the structure of lactococcal phage TP901-1. J Virol 87:1061–1068CrossRef
    Chang V, Ling-Yi C, Wang A, Yuan X (2010) The effect of lipopolysaccharide core structure defects on transformation efficiency in isogenic Escherichia coli BW25113 rfaG, rfaP, and rfaC mutants. J Exp Microbiol Immunol 14:101–107
    Chatterjee S, Rothenberg E (2012) Interaction of bacteriophage l with its E. coli receptor. LamB Viruses 4:3162–3178CrossRef
    Choi Y, Shin H, Lee JH, Ryu S (2013) Identification and characterization of a novel flagellum-dependent Salmonella-infecting bacteriophage, iEPS5. Appl Environ Microbiol 79:4829–4837CrossRef
    Friedman DI, Court DL (2001) Bacteriophage lambda: alive and well and still doing its thing. Current Opin Microbiol 4:201–207CrossRef
    Genevaux P, Bauda P, DuBow MS, Oudega B (1999) Identification of Tn10 insertions in the rfaG, rfaP, and galU genes involved in lipopolysaccharide core biosynthesis that affect Escherichia coli adhesion. Arch Microbiol 172:1–8CrossRef
    Goryshin IY, Miller JA, Kil YV, Lanzov VA, Reznikoff WS (1998) Tn5/IS50 target recognition. PNAS 95:10716–10721CrossRef
    Green B, Bouchier C, Fairhead C, Craig NL, Cormack BP (2012) Insertion site preference of Mu, Tn5, and Tn7 transposons. Mobile DNA 3:3–7CrossRef
    Kim EJ (2015) Characterization and infection receptor analysis of bacteriophages for Escherichia coli O157:H7 and non-O157 shiga toxin-producing E. coli. Master degree, Gachon University, Seoul
    Kutter E (2009) Phage host range and efficiency of plating. In: Clokie MRJ, Kropinski AM (eds) Bacteriophages, 1st edn. Humana Press, UK, pp 141–149CrossRef
    Lee JE, Lim MY, Kim SY, Lee S, Lee H, Oh HM, Ko G (2009) Molecular characterization of bacteriophages for microbial source tracking in Korea. Appl Environ Microbiol 75:7107–7114CrossRef
    Lee YD, Kim JY, Park JH (2013) Characteristics of coliphage ECP4 and potential use as a sanitizing agent for biocontrol of Escherichia coli O157: H7. Food Control 34:255–260CrossRef
    Li S, Liu L, Zhu J, Zou L, Li M, Cong Y, Hu F (2010) Characterization and genome sequencing of a novel coliphage isolated from engineered Escherichia coli. Intervirology 53:211–220CrossRef
    Lindberg AA, Wollin R, Gemski P, Wohlhieter JA (1978) Interaction between bacteriophage Sf6 and Shigella flexner. J Virol 27:38–44
    Lodge JK, Weston-Hafer K, Berg DE (1988) Transposon Tn5 target specificity: preference for insertion at G/C pairs. Genetics 120:645–650
    Morita M, Tanji Y, Mizoguchi K, Akitsu T, Kijima N, Unno H (2002) Characterization of a virulent bacteriophage specific for Escherichia coli O157: H7 and analysis of its cellular receptor and two tail fiber genes. FEMS Microbiol Lett 211:77–83CrossRef
    Mudhakir D, Harashima H (2009) Learning from the viral journey: how to enter cells and how to overcome intracellular barriers to reach the nucleus. AAPS J 11:65–77CrossRef
    Park M, Lee JH, Shin H, Kim M, Choi J, Kang DH, Ryu S (2012) Characterization and comparative genomic analysis of a novel bacteriophage, SFP10, simultaneously inhibiting both Salmonella enterica and Escherichia coli O157:H7. Appl Environ Microbiol 78:58–69CrossRef
    Parker CT, Pradel E, Schnaitman CA (1992) Identification and sequences of the lipopolysaccharide core biosynthetic genes rfaQ, rfaP, and rfaG of Escherichia coli K-12. J Bacteriol 174:930–934
    Pate JL, Petzold SJ, Umbreit TH (1979) Two flagellotropic phages and one pilus-specific phage active against Asticcacaulis biprosthecum. Virology 94:24–37CrossRef
    Rakhuba DV, Kolomiets EI, Dey ES, Novik GI (2010) Bacteriophage receptors, mechanisms of phage adsorption and penetration into host cell. Pol J Microbiol 59:145–155
    Randall-Hazelbauer L, Schwartz M (1973) Isolation of the bacteriophage lambda receptor from Escherichia coli. J Bacteriol 116:1436–1446
    Reyes-Cortés R, Martínez-Peñafiel E, Martínez-Pérez F, de la Garza M, Kameyama L (2012) A novel strategy to isolate cell-envelope mutants resistant to phage infection: bacteriophage mEp213 requires lipopolysaccharides in addition to FhuA to enter Escherichia coli K-12. Microbiology 158:3063–3071CrossRef
    Riede I, Degen M, Henning U (1985) The receptor specificity of bacteriophages can be determined by a tail fiber modifying protein. EMBO J 4:2343–2346
    Santos SB, Kropinski AM, Ceyssens PJ, Ackermann HW, Villegas A, Lavigne R, Azeredo J (2011) Genomic and proteomic characterization of the broad-host-range Salmonella phage PVP-SE1: creation of a new phage genus. J Virol 85:11265–11273CrossRef
    Shin H, Lee JH, Kim H, Choi Y, Heu S, Ryu S (2012) Receptor diversity and host interaction of bacteriophages infecting Salmonella enterica serovar Typhimurium. PLoS ONE 7:e43392CrossRef
    Traurig M, Misra R (1999) Identification of bacteriophage K20 binding regions of OmpF and lipopolysaccharide in Escherichia coli K-12. FEMS Microbiol Lett 181:101–108CrossRef
    Veesler D, Cambillau C (2011) A common evolutionary origin for tailed-bacteriophage functional modules and bacterial machineries. Microbiol Mol Biol R 75:423–433CrossRef
    Vinga I, São-José C, Tavares P, Santos MA (2006) Bacteriophage entry in the host cell. Modern bacteriophage biology and biotechnology. Research Signpost, INIST-CNRS, pp 165–205
    Vinga I, Baptista C, Auzat I, Petipas I, Lurz R, Tavares P, São-José C (2012) Role of bacteriophage SPP1 tail spike protein gp21 on host cell receptor binding and trigger of phage DNA ejection. Mol Microbiol 83:289–303CrossRef
    Wu N, Matand K, Kebede B, Acquaah G, Williams S (2010) Enhancing DNA electrotransformation efficiency in Escherichia coli DH10B electrocompetent cells. Electron J Biotechnol 13:21–22CrossRef
    Yethon JA, Vinogradov E, Perry MB, Whitfield C (2000) Mutation of the lipopolysaccharide core glycosyltransferase encoded by waaG destabilizes the outer membrane of Escherichia coli by interfering with core phosphorylation. J Bacteriol 182:5620–5623CrossRef
    Yu F, Mizushima S (1982) Roles of lipopolysaccharide and outer membrane protein OmpC of Escherichia coli K-12 in the receptor function for bacteriophage T4. J Bacteriol 151:718–722
  • 作者单位:Eun-Jin Kim (1)
    Heyn Lee (2)
    Ju-Hoon Lee (2)
    Sangryol Ryu (3)
    Jong-Hyun Park (1)

    1. Department of Food Science and Biotechnology, Gachon University, Sungnam, 13120, Republic of Korea
    2. Department of Food Science and Biotechnology, Institute of Life Sciences and Resources, Kyung Hee University, Yongin, 17104, Republic of Korea
    3. Department of Food and Animal Biotechnology, Seoul National University, Seoul, 08826, Republic of Korea
  • 刊物主题:Applied Microbiology; Bioorganic Chemistry; Biological Techniques;
  • 出版者:Springer Netherlands
  • ISSN:2234-344X
文摘
The objective of the present study was to analyze host-phage adsorption of bacteriophages infecting Escherichia coli O157:H7 and the other E. coli strains. Out of 55 coliphage strains, we selected seven coliphages infectious only to 23 E. coli O157 and seven other coliphages of broad specificity to E. coli O157:H7 and other 61 E. coli. Escherichia coli O157-specific phages and the broadly specific phages all belonged to the Siphoviridae and Myoviridae family, respectively. Escherichia coli O157-specific phages infected E. coli O157:H7, but not E. coli O157:H7△rfaL, deletion mutant of O-antigen ligase gene for lipopolysaccharide. Five coliphages among the broadly specific phages infected E. coli O103, but not E. coli O103△rfaG, deletion mutant of the glycosyltransferase gene. E. coli O157:H7-specific phages among Siphoviridae recognized O-antigen of E. coli O157, but the broadly specific coliphages of Myoviridae may recognize O-antigen and/or a part of the lipopolysaccharide core as an adsorption site in various E. coli. The receptor of the two coliphage groups interacts with some part of lipopolysaccharide, and the tail morphology of the coliphages may be related to their adsorption to and recognition of a different part of lipopolysaccharide. In particular, specificity of E. coli O157:H7-specific phages carrying the long tail of Siphoviridae for O-antigen as a receptor seems to be high.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700