AluScan: a method for genome-wide scanning of sequence and structure variations in the human genome
详细信息    查看全文
  • 作者:Lingling Mei (1)
    Xiaofan Ding (1)
    Shui-Ying Tsang (1)
    Frank W Pun (1)
    Siu-Kin Ng (1)
    Jianfeng Yang (1)
    Cunyou Zhao (1)
    Dezhi Li (2)
    Weiqing Wan (2) (3)
    Chi-Hung Yu (4) (5)
    Tze-Ching Tan (4) (5)
    Wai-Sang Poon (5) (6)
    Gilberto Ka-Kit Leung (5) (7)
    Ho-Keung Ng (5) (8)
    Liwei Zhang (2) (3)
    Hong Xue (1) (3) (5)
  • 刊名:BMC Genomics
  • 出版年:2011
  • 出版时间:December 2011
  • 年:2011
  • 卷:12
  • 期:1
  • 全文大小:847KB
  • 参考文献:1. Ullu E, Tschudi C: Alu sequences are processed 7SL RNA genes. / Nature 1984, 312:171鈥?72. CrossRef
    2. Konkel MK, Batzer MA: A mobile threat to genome stability: The impact of non-LTR retrotransposons upon the human genome. / Semin Cancer Biol 2010, 20:211鈥?21. CrossRef
    3. Zhang Y, Romanish MT, Mager DL: Distributions of transposable elements reveal hazardous zones in mammalian introns. / PLoS Comput Biol 2011, 7:e1002046. CrossRef
    4. Batzer MA, Deininger PL: Alu repeats and human genomic diversity. / Nat Rev Genet 2002, 3:370鈥?79. CrossRef
    5. Lander ES, Linton LM, Birren B, Nusbaum C, Zody MC, Baldwin J, Devon K, Dewar K, Doyle M, FitzHugh W, Funke R, Gage D, Harris K, Heaford A, Howland J, Kann L, Lehoczky J, LeVine R, McEwan P, McKernan K, Meldrim J, Mesirov JP, Miranda C, Morris W, Naylor J, Raymond C, Rosetti M, Santos R, Sheridan A, Sougnez C, / et al.: Initial sequencing and analysis of the human genome. / Nature 2001, 409:860鈥?21. CrossRef
    6. Deininger PL, Moran JV, Batzer MA, Kazazian HH Jr: Mobile elements and mammalian genome evolution. / Curr Opin Genet Dev 2003, 13:651鈥?58. CrossRef
    7. Witherspoon DJ, Watkins WS, Zhang Y, Xing J, Tolpinrud WL, Hedges DJ, Batzer MA, Jorde LB: Alu repeats increase local recombination rates. / BMC Genomics 2009, 10:530. CrossRef
    8. Ng SK, Xue H: Alu-associated enhancement of single nucleotide polymorphisms in the human genome. / Gene 2006, 368:110鈥?16. CrossRef
    9. Rodriguez J, Vives L, Jorda M, Morales C, Munoz M, Vendrell E, Peinado MA: Genome-wide tracking of unmethylated DNA Alu repeats in normal and cancer cells. / Nucleic Acids Res 2008, 36:770鈥?84. CrossRef
    10. Lo WS, Xu Z, Yu Z, Pun FW, Ng SK, Chen J, Tong KL, Zhao C, Xu X, Tsang SY, Harano M, Stober G, Nimgaonkar VL, Xue H: Positive selection within the Schizophrenia-associated GABA A receptor 尾2 gene. / PLoS One 2007, 2:e462. CrossRef
    11. Ng SK, Lo WS, Pun FW, Zhao C, Yu Z, Chen J, Tong KL, Xu Z, Tsang SY, Yang Q, Yu W, Nimgaonkar V, Stober G, Harano M, Xue H: A recombination hotspot in a schizophrenia-associated region of GABRB2 . / PLoS One 2010, 5:e9547. CrossRef
    12. Lo WS, Lau CF, Xuan Z, Chan CF, Feng GY, He L, Cao ZC, Liu H, Luan QM, Xue H: Association of SNPs and haplotypes in GABA A receptor 尾2 gene with schizophrenia. / Mol Psychiatry 2004, 9:603鈥?08. CrossRef
    13. Zhao C, Xu Z, Wang F, Chen J, Ng SK, Wong PW, Yu Z, Pun FW, Ren L, Lo WS, Tsang SY, Xue H: Alternative-splicing in the exon-10 region of GABA A receptor 尾2 subunit gene: relationships between novel isoforms and psychotic disorders. / PLoS One 2009, 4:e6977. CrossRef
    14. Nelson DL, Ledbetter SA, Corbo L, Victoria MF, Ramirez-Solis R, Webster TD, Ledbetter DH, Caskey CT: Alu polymerase chain reaction: a method for rapid isolation of human-specific sequences from complex DNA sources. / Proc Natl Acad Sci USA 1989, 86:6686鈥?690. CrossRef
    15. Zietkiewicz E, Labuda M, Sinnett D, Glorieux FH, Labuda D: Linkage mapping by simultaneous screening of multiple polymorphic loci using Alu oligonucleotide-directed PCR. / Proc Natl Acad Sci USA 1992, 89:8448鈥?451. CrossRef
    16. Kass DH, Batzer MA: Inter-Alu polymerase chain reaction: advancements and applications. / Anal Biochem 1995, 228:185鈥?93. CrossRef
    17. Krajinovic M, Richer C, Labuda D, Sinnett D: Detection of a mutator phenotype in cancer cells by inter-Alu polymerase chain reaction. / Cancer Res 1996, 56:2733鈥?737.
    18. Srivastava T, Seth A, Datta K, Chosdol K, Chattopadhyay P, Sinha S: Inter-alu PCR detects high frequency of genetic alterations in glioma cells exposed to sub-lethal cisplatin. / Int J Cancer 2005, 117:683鈥?89. CrossRef
    19. Li H, Durbin R: Fast and accurate short read alignment with Burrows-Wheeler transform. / Bioinformatics 2009, 25:1754鈥?760. CrossRef
    20. Kim DW, Nam SH, Kim RN, Choi SH, Park HS: Whole human exome capture for high-throughput sequencing. / Genome 2010, 53:568鈥?74. CrossRef
    21. Durand KS, Guillaudeau A, Weinbreck N, DeArmas R, Robert S, Chaunavel A, Pommepuy I, Bourthoumieu S, Caire F, Sturtzand FG, Labrousse FJ: 1p19q LOH patterns and expression of p53 and Olig2 in gliomas: relation with histological types and prognosis. / Mol Pathol 2010, 23:619鈥?28. CrossRef
    22. Park ES, Huh JW, Kim TH, Kwak KD, Kim W, Kim HS: Analysis of newly identified low copy AluYj subfamily. / Genes Genet Syst 2005, 80:415鈥?22. CrossRef
    23. Price AL, Eskin E, Pevzner PA: Whole-genome analysis of Alu repeat elements reveals complex evolutionary history. / Genome Res 2004, 14:2245鈥?252. CrossRef
    24. Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, Marth G, Abecasis G, Durbin R: The Sequence Alignment/Map format and SAMtools. / Bioinformatics 2009, 25:2078鈥?079. CrossRef
    25. McKenna A, Hanna M, Banks E, Sivachenko A, Cibulskis K, Kernytsky A, Garimella K, Altshuler D, Gabriel S, Daly M, DePristo MA: The Genome Analysis Toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. / Genome Res 2010, 20:1297鈥?303. CrossRef
    26. Chen K, Wallis JW, McLellan MD, Larson DE, Kalicki JM, Pohl CS, McGrath SD, Wendl MC, Zhang Q, Locke DP, Shi X, Fulton RS, Ley TJ, Wilson RK, Ding L, Mardis ER: BreakDancer: an algorithm for high-resolution mapping of genomic structural variation. / Nat Methods 2009, 6:677鈥?81. CrossRef
    27. Ye K, Schulz MH, Long Q, Apweiler R, Ning Z: Pindel: a pattern growth approach to detect break points of large deletions and medium sized insertions from paired-end short reads. / Bioinformatics 2009, 25:2865鈥?871. CrossRef
    28. Sathirapongsasuti JF, Lee H, Horst BA, Brunner G, Cochran AJ, Binder S, Quackenbush J, Nelson SF: Exome sequencing-based copy-number variation and loss of heterozygosity detection: ExomeCNV. / Bioinformatics 2011, 27:2648鈥?654. CrossRef
    29. Krzywinski M, Schein J, Birol I, Connors J, Gascoyne R, Horsman D, Jones SJ, Marra MA: Circos: an information aesthetic for comparative genomics. / Genome Res 2009, 19:1639鈥?645. CrossRef
  • 作者单位:Lingling Mei (1)
    Xiaofan Ding (1)
    Shui-Ying Tsang (1)
    Frank W Pun (1)
    Siu-Kin Ng (1)
    Jianfeng Yang (1)
    Cunyou Zhao (1)
    Dezhi Li (2)
    Weiqing Wan (2) (3)
    Chi-Hung Yu (4) (5)
    Tze-Ching Tan (4) (5)
    Wai-Sang Poon (5) (6)
    Gilberto Ka-Kit Leung (5) (7)
    Ho-Keung Ng (5) (8)
    Liwei Zhang (2) (3)
    Hong Xue (1) (3) (5)

    1. Division of Life Science and Applied Genomics Centre, Hong Kong University of Science and Technology, 1 University Road, Clear Water Bay, Kowloon, Hong Kong, China
    2. Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, 6 Tiantan Xili, Dongcheng District, Beijing, 100050, China
    3. Chinese Cancer Genome Consortium, Beijing Genome Institute Shenzhen, 11 Beishan Industrial Zone, Yantian District, Shenzhen, 518083, China
    4. Department of Neurosurgery, Queen Elizabeth Hospital, 30 Gascoigne Road, Kowloon, Hong Kong, China
    5. Brain Cancer Genome Consortium - Hong Kong, Applied Genomics Center, Hong Kong University of Science and Technology, 1 University Road, Clear Water Bay, Kowloon, Hong Kong, China
    6. Division of Neurosurgery, Department of Surgery, Prince of Wales Hospital, Chinese University of Hong Kong, 30-32 Ngan Shing Street, Sha Tin, Hong Kong, China
    7. Division of Neurosurgery, Department of Surgery, Li Ka Shing Faculty of Medicine, University of Hong Kong, Queen Mary Hospital, 102 Pokfulam Road, Hong Kong, China
    8. Department of Anatomical and Cellular Pathology, Prince of Wales Hospital, Chinese University of Hong Kong, 30-32 Ngan Shing Street, Sha Tin, Hong Kong, China
文摘
Background To complement next-generation sequencing technologies, there is a pressing need for efficient pre-sequencing capture methods with reduced costs and DNA requirement. The Alu family of short interspersed nucleotide elements is the most abundant type of transposable elements in the human genome and a recognized source of genome instability. With over one million Alu elements distributed throughout the genome, they are well positioned to facilitate genome-wide sequence amplification and capture of regions likely to harbor genetic variation hotspots of biological relevance. Results Here we report on the use of inter-Alu PCR with an enhanced range of amplicons in conjunction with next-generation sequencing to generate an Alu-anchored scan, or 'AluScan', of DNA sequences between Alu transposons, where Alu consensus sequence-based 'H-type' PCR primers that elongate outward from the head of an Alu element are combined with 'T-type' primers elongating from the poly-A containing tail to achieve huge amplicon range. To illustrate the method, glioma DNA was compared with white blood cell control DNA of the same patient by means of AluScan. The over 10 Mb sequences obtained, derived from more than 8,000 genes spread over all the chromosomes, revealed a highly reproducible capture of genomic sequences enriched in genic sequences and cancer candidate gene regions. Requiring only sub-micrograms of sample DNA, the power of AluScan as a discovery tool for genetic variations was demonstrated by the identification of 357 instances of loss of heterozygosity, 341 somatic indels, 274 somatic SNVs, and seven potential somatic SNV hotspots between control and glioma DNA. Conclusions AluScan, implemented with just a small number of H-type and T-type inter-Alu PCR primers, provides an effective capture of a diversity of genome-wide sequences for analysis. The method, by enabling an examination of gene-enriched regions containing exons, introns, and intergenic sequences with modest capture and sequencing costs, computation workload and DNA sample requirement is particularly well suited for accelerating the discovery of somatic mutations, as well as analysis of disease-predisposing germline polymorphisms, by making possible the comparative genome-wide scanning of DNA sequences from large human cohorts.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700