Optimizing Acid Hydrolysis of Jerusalem Artichoke-Derived Inulin for Fermentative Butanol Production
详细信息    查看全文
  • 作者:Tahereh Sarchami ; Lars Rehmann
  • 关键词:Jerusalem artichoke ; Inulin ; Acid hydrolysis ; Optimization ; Response surface methodology (RSM) ; ABE fermentation
  • 刊名:BioEnergy Research
  • 出版年:2015
  • 出版时间:September 2015
  • 年:2015
  • 卷:8
  • 期:3
  • 页码:1148-1157
  • 全文大小:447 KB
  • 参考文献:1.Schiel-Bengelsdorf B, Montoya J, Linder S, Dürre P (2013) Butanol fermentation. Environ Technol 34:1691-710. doi:10.-080/-9593330.-013.-27746 CrossRef PubMed
    2.Alvira P, Tomás-Pejó E, Ballesteros M, Negro MJ (2010) Pretreatment technologies for an efficient bioethanol production process based on enzymatic hydrolysis: a review. Bioresour Technol 101:4851-861. doi:10.-016/?j.?biortech.-009.-1.-93 CrossRef PubMed
    3.Sánchez OJ, Cardona CA (2008) Trends in biotechnological production of fuel ethanol from different feedstocks. Bioresour Technol 99:5270-295. doi:10.-016/?j.?biortech.-007.-1.-13 CrossRef PubMed
    4.Sarchami T, Rehmann L (2014) Optimizing enzymatic hydrolysis of inulin from Jerusalem artichoke tubers for fermentative butanol production. Biomass Bioenergy 69:175-82. doi:10.-016/?j.?biombioe.-014.-7.-18 CrossRef
    5.Jones DT, Woods DR (1986) Acetone-butanol fermentation revisited. Microbiol Rev 50:484-24PubMed Central PubMed
    6.Dürre P (2007) Biobutanol: an attractive biofuel. Biotechnol J 2:1525-534. doi:10.-002/?biot.-00700168 CrossRef PubMed
    7.Qureshi N, Ezeji TC, Ebener J et al (2008) Butanol production by Clostridium beijerinckii. Part I: use of acid and enzyme hydrolyzed corn fiber. Bioresour Technol 99:5915-922. doi:10.-016/?j.?biortech.-007.-9.-87 CrossRef PubMed
    8.García V, P?kkil? J, Ojamo H et al (2011) Challenges in biobutanol production: how to improve the efficiency? Renew Sustain Energy Rev 15:964-80. doi:10.-016/?j.?rser.-010.-1.-08 CrossRef
    9.Raganati F, Olivieri G, Procentese A et al (2013) Butanol production by bioconversion of cheese whey in a continuous packed bed reactor. Bioresour Technol 138:259-65CrossRef PubMed
    10.Gao K, Rehmann L (2014) ABE fermentation from enzymatic hydrolysate of NaOH-pretreated corncobs. Biomass Bioenergy 66:110-15. doi:10.-016/?j.?biombioe.-014.-3.-02 CrossRef
    11.Szambelan K, Nowak J, Jelen H (2005) The composition of Jerusalem artichoke (Helianthus tuberosus L.) spirits obtained from fermentation with bacteria and yeasts. Eng Life Sci 5:68-1. doi:10.-002/?elsc.-00400052 CrossRef
    12.Matías J, González J, Royano L, Barrena R (2011) Analysis of sugars by liquid chromatography-mass spectrometry in Jerusalem artichoke tubers for bioethanol production optimization. Biomass Bioenergy 35:2006-012. doi:10.-016/?j.?biombioe.-011.-1.-56 CrossRef
    13.Tasi? MB, Konstantinovi? BV, Lazi? ML, Veljkovi? VB (2009) The acid hydrolysis of potato tuber mash in bioethanol production. Biochem Eng J 43:208-11. doi:10.-016/?j.?bej.-008.-9.-19 CrossRef
    14.Pedersen M, Viks?-Nielsen A, Meyer AS (2010) Monosaccharide yields and lignin removal from wheat straw in response to catalyst type and pH during mild thermal pretreatment. Process Biochem 45:1181-186. doi:10.-016/?j.?procbio.-010.-3.-20 CrossRef
    15.Almeida RM, Modig T, Petersson A et al (2007) Increased tolerance and conversion of inhibitors in lignocellulosic hydrolysates by Saccharomyces cerevisiae. Journal Chem Technol Biotechnol 349:340-49. doi:10.-002/?jctb CrossRef
    16.Schwab K, Wood JA, Rehmann L (2013) Pyrolysis byproducts as feedstocks for fermentative biofuel production: an evaluation of inhibitory compounds through a synthetic aqueous phase. Ind Eng Chem Res 52:18234-8240. doi:10.-021/?ie403354k CrossRef
    17.Razmovski R, Vucurovic V, Miljic U, Puskas V (2013) Effect of temperature on acid hydrolysis of Jerusalem artichoke as raw material for ethanol production. Acta Period Technol 44:279-87. doi:10.-298/?APT1344279R CrossRef
    18.Jain VK, Baratti J (1985) Effect of acid or enzymatic hydrolysis on ethanol production by Zymomonaz mobilis growing on Jerusalem artichoke juice. Biotechnol Lett 530:527-30
    19.Kim K, Hamdy MK (1986) Acid hydrolysis of Jerusalem artichoke for ethanol fermentation. Biotechnol Bioeng XXVIII:138-41CrossRef
    20.Razmovski RN, ??iban MB, Vu?urovi? VM (2011) Bioethanol production from Jerusalem artichoke by acid hydrolysis. Rom Biotechnol Lett 16:6497-503
    21.Bekers M, Grube M, Upite D et al (2007) Carbohydrates in Jerusalem artichoke powder suspension. Nutr Food Sci 37:42-9. doi:10.-108/-034665071072694- CrossRef
    22.Szambelan K, Nowak J (2006) Acid and enzymatic hydrolysis of Jerusalem artichoke (Helianthus tuberosus) tubers for further ethanol production. Electron J Polish Agric Univ 9:36
    23.Bekers M, Grube M, Upite D et al (2008) Inulin syrup from dried Jerusalem artichoke. LLU Raksti 21:116-21
    24.B?hm A, Kaiser I, Trebstein A, Henle T (2004) Heat-induced degradation of inulin. Eur Food Res Technol 220:466-71. doi:10.-007/?s00217-004-1098-8 CrossRef
    25.Dao TH, Zhang J, Bao J (2013) Characterization of inulin hydrolyzing enzyme(s) in commercial glucoamylases and its application in lactic acid production from Jerusalem artichoke tubers (Jat). Bioresour Technol 148:157-62. doi:10.-016/?j.?biortech.-013.-8.-23 CrossRef PubMed
    26.Zhang
  • 作者单位:Tahereh Sarchami (1)
    Lars Rehmann (1)

    1. Department of Chemical and Biochemical Engineering, University of Western Ontario, 1151 Richmond Street, London, ON, N6A 3K7, Canada
  • 刊物类别:Chemistry and Materials Science
  • 刊物主题:Chemistry
    Biomaterials
    Biochemical Engineering
    Bioorganic Chemistry
  • 出版者:Springer New York
  • ISSN:1939-1242
文摘
In this study, a central composite design and response surface methodology were used to study the effect of various hydrolysis variables (temperature, pH, and time) on the acid hydrolysis of Jerusalem artichoke-derived inulin using three different mineral acids (HCl, H2SO4, and H3PO4). Numerical optimization was used to maximize the sugar yield of Jerusalem artichoke powder within the experimental range for each of the mentioned acid. The influence of each acid on the formation of hydroxymethylfurfural (HMF; a known by-product and inhibitor for fermentative organisms) was also investigated. H2SO4 was found to have a better potential for sugar yields compared to two other acids (HCl and H3PO4) since it can hydrolyze the highest amount of inulin (98.5 %) under optimal conditions (temperature of 97 °C, pH of 2.0, and time period of 35 min) without producing inhibiting HMF concentrations. The sulfuric hydrolysate of Jerusalem artichoke was fermented via solventogenic clostridia to acetone-butanol-ethanol (ABE). An ABE yield of 0.31 g g? and an overall fermentation productivity of 0.25 g l? h? were obtained, indicating the suitability of this feedstock for fermentative ABE production. Keywords Jerusalem artichoke Inulin Acid hydrolysis Optimization Response surface methodology (RSM) ABE fermentation

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700