Therapy resistance mechanisms in Ewing’s sarcoma family tumors
详细信息    查看全文
  • 作者:Atif A. Ahmed (1) (3)
    Hamid Zia (1)
    Lars Wagner (2)
  • 关键词:Ewing’s sarcoma ; Chemotherapy resistance ; IGF1R ; Signaling pathways
  • 刊名:Cancer Chemotherapy and Pharmacology
  • 出版年:2014
  • 出版时间:April 2014
  • 年:2014
  • 卷:73
  • 期:4
  • 页码:657-663
  • 全文大小:449 KB
  • 参考文献:1. Balamuth NJ, Womer RB (2010) Ewing’s sarcoma. Lancet Oncol 11(2):184-92 CrossRef
    2. Ross KA, Smyth NA, Murawski CD, Kennedy JG (2013) The biology of Ewing sarcoma. ISRN Oncol 2013:759725
    3. Kelleher FC, Thomas DM (2012) Molecular pathogenesis and targeted therapeutics in Ewing sarcoma/primitive neuroectodermal tumours. Clin Sarcoma Res 2(1):6 CrossRef
    4. Ordó?ez JL, Osuna D, Herrero D, de Alava E, Madoz-Gúrpide J (2009) Advances in Ewing’s sarcoma research: where are we now and what lies ahead? Cancer Res 69(18):7140-150 CrossRef
    5. Grier HE (1997) The Ewing family of tumors. Ewing’s sarcoma and primitive neuroectodermal tumors. Pediatr Clin North Am 44:991 CrossRef
    6. Kissane JM, Askin FB, Foulkes M, Stratton LB, Shirley SF (1983) Ewing’s sarcoma of bone: clinicopathologic aspects of 303 cases from the Intergroup Ewing’s Sarcoma Study. Hum Pathol 14:773 CrossRef
    7. Arpaci E, Yetisyigit T, Seker M, Uncu D, Uyeturk U, Oksuzoglu B, Demirci U, Coskun U, Kucukoner M, Is?kdogan A, Inanc M, Alkis N, Ozkan M (2013) Prognostic factors and clinical outcome of patients with Ewing’s sarcoma family of tumors in adults: multicentric study of the Anatolian Society of Medical Oncology. Med Oncol 30(1):469 CrossRef
    8. Geryk-Hall M, Hughes DP (2009) Critical signaling pathways in bone sarcoma: candidates for therapeutic interventions. Curr Oncol Rep 11(6):446-53 CrossRef
    9. Johnson R, Humphreys SR (1969) Past failures and future possibilities in Ewing’s sarcoma: experimental and preliminary clinical results. Cancer 23:161-66 CrossRef
    10. Womer RB, West DC, Krailo MD, Dickman PS, Pawel BR, Grier HE, Marcus K, Sailer S, Healey JH, Dormans JP, Weiss AR (2012) Randomized controlled trial of interval-compressed chemotherapy for the treatment of localized Ewing sarcoma: a report from the Children’s Oncology Group. J Clin Oncol 30:4148-154 CrossRef
    11. Rodriguez-Galindo C, Billups CA, Kun LE, Rao BN, Pratt CB, Merchant TE, Santana VM, Pappo AS (2002) Survival after recurrence of Ewing tumors: the St Jude Children’s Research Hospital experience, 1979-999. Cancer 94:561-69 CrossRef
    12. Pinkerton CR, Bataillard A, Guillo S, Oberlin O, Fervers B, Philip T (2001) Treatment strategies for metastatic Ewing’s sarcoma. Eur J Cancer 37:1338-344 CrossRef
    13. Bao B, Ahmad A, Azmi AS, Ali S, Sarkar FH (2013) Overview of cancer stem cells (CSCs) and mechanisms of their regulation: implications for cancer therapy. Curr Protoc Pharmacol 14(Unit14):25
    14. Honoki K (2010) Do stem-like cells play a role in drug resistance of sarcomas? Expert Rev Anticancer Ther 10(2):261-70 CrossRef
    15. Bao B, Ahmad A, Li Y, Azmi AS, Ali S, Banerjee S, Kong D, Sarkar FH (2012) Targeting CSCs within the tumor microenvironment for cancer therapy: a potential role of mesenchymal stem cells. Expert Opin Ther Targets 16(10):1041-054 CrossRef
    16. Trucco M, Loeb D (2012) Sarcoma stem cells: do we know what we are looking for? Sarcoma 2012:291705 CrossRef
    17. Monument MJ, Bernthal NM, Randall RL (2013) Salient features of mesenchymal stem cells-implications for Ewing sarcoma modeling. Front Oncol 3:24 CrossRef
    18. Lin PP, Wang Y, Lozano G (2011) Mesenchymal stem cells and the origin of Ewing’s sarcoma. Sarcoma 2011:276463
    19. Jiang X, Gwye Y, Russell D, Cao C, Douglas D, Hung L, Kovar H, Triche TJ, Lawlor ER (2010) CD133 expression in chemo-resistant Ewing sarcoma cells. BMC Cancer 10:116 CrossRef
    20. Saini V, Shoemaker RH (2010) Potential for therapeutic targeting of tumor stem cells. Cancer Sci 101(1):16-1 CrossRef
    21. Huang HY, Illei PB, Zhao Z, Mazumdar M, Huvos AG, Healey JH, Wexler LH, Gorlick R, Meyers P, Ladanyi M (2005) Ewing sarcomas with p53 mutation or p16/p14ARF homozygous deletion: a highly lethal subset associated with poor chemoresponse. J Clin Oncol 23(3):548-58 CrossRef
    22. Lopez-Guerrero JA, Machado I, Scotlandi K, Noguera R, Pellin A, Navarro S, Serra M, Calabuig-Fari?as S, Picci P, Llombart-Bosch A (2011) Clinicopathological significance of cell cycle regulation markers in a large series of genetically confirmed Ewing’s sarcoma family of tumors. Int J Cancer 128:1139-150 CrossRef
    23. Dylla L, Moore C, Jedlicka P (2013) MicroRNAs in Ewing sarcoma. Front Oncol 3:65 CrossRef
    24. Iida K, Fukushi J, Matsumoto Y, Oda Y, Takahashi Y, Fujiwara T, Fujiwara-Okada Y, Hatano M, Nabashima A, Kamura S, Iwamoto Y (2013) miR-125b develops chemoresistance in Ewing sarcoma/primitive neuroectodermal tumor. Cancer Cell Int 13(1):21 CrossRef
    25. Nakatani F, Ferracin M, Manara MC, Ventura S, Del Monaco V, Ferrari S, Alberghini M, Grilli A, Knuutila S, Schaefer KL, Mattia G, Negrini M, Picci P, Serra M, Scotlandi K (2012) miR-34a predicts survival of Ewing’s sarcoma patients and directly influences cell chemo-sensitivity and malignancy. J Pathol 226(5):796-05 CrossRef
    26. Robin TP, Smith A, McKinsey E, Reaves L, Jedlicka P, Ford HL (2012) EWS/FLI1 regulates EYA3 in Ewing sarcoma via modulation of miRNA-708, resulting in increased cell survival and chemoresistance. Mol Cancer Res 10(8):1098-108 CrossRef
    27. Navarro S, Giraudo P, Karseladze AI, Smirnov A, Petrovichev N, Savelov N, Alvarado-Cabrero I, Llombart-Bosch A (2007) Immunophenotypic profile of biomarkers related to anti-apoptotic and neural development pathways in the Ewing’s family of tumors (EFT) and their therapeutic implications. Anticancer Res 27(4B):2457-463
    28. Greve B, Sheikh-Mounessi F, Kemper B, Ernst I, G?tte M, Eich HT (2012) Survivin, a target to modulate the radiosensitivity of Ewing’s sarcoma. Strahlenther Onkol 188(11):1038-047 CrossRef
    29. Holt SV, Brookes KE, Dive C, Makin GW (2011) Down-regulation of XIAP by AEG35156 in paediatric tumour cells induces apoptosis and sensitises cells to cytotoxic agents. Oncol Rep 25(4):1177-181
    30. Mitsiades N, Poulaki V, Leone A, Tsokos M (1999) Fas-mediated apoptosis in Ewing’s sarcoma cell lines by metalloproteinase inhibitors. J Natl Cancer Inst 91(19):1678-684 CrossRef
    31. Hijazi YM, Axiotis CA, Navarro S, Steinberg SM, Horowitz ME, Tsokos M (1994) Immunohistochemical detection of P-glycoprotein in Ewing’s sarcoma and peripheral primitive neuroectodermal tumors before and after chemotherapy. Am J Clin Pathol 102(1):61-7
    32. Oda Y, Dockhorn-Dworniczak B, Jürgens H, Roessner A (1997) Expression of multidrug resistance-associated protein gene in Ewing’s sarcoma and malignant peripheral neuroectodermal tumor of bone. J Cancer Res Clin Oncol 123(4):237-39 CrossRef
    33. Okada T, Tanaka K, Nakatani F, Sakimura R, Matsunobu T, Li X, Hanada M, Nakamura T, Oda Y, Tsuneyoshi M, Iwamoto Y (2006) Involvement of P-glycoprotein and MRP1 in resistance to cyclic tetrapeptide subfamily of histone deacetylase inhibitors in the drug-resistant osteosarcoma and Ewing’s sarcoma cells. Int J Cancer 118(1):90-7 CrossRef
    34. Januchowski R, Wojtowicz K, Zabel M (2013) The role of aldehyde dehydrogenase (ALDH) in cancer drug resistance. Biomed Pharmacother 67(7):669-80
    35. Awad O, Yustein JT, Shah P, Gul N, Katuri V, O’Neill A, Kong Y, Brown ML, Toretsky JA, Loeb DM (2010) High ALDH activity identifies chemotherapy-resistant Ewing’s sarcoma stem cells that retain sensitivity to EWS–FLI1 inhibition. PLoS One 5(11):e13943 CrossRef
    36. Nakamura T, Tanaka K, Matsunobu T, Okada T, Nakatani F, Sakimura R, Hanada M, Iwamoto Y (2007) The mechanism of cross-resistance to proteasome inhibitor bortezomib and overcoming resistance in Ewing’s family tumor cells. Int J Oncol 31(4):803-11
    37. Townsend DM, Tew KD (2003) The role of glutathione-S-transferase in anti-cancer drug resistance. Oncogene 22(47):7369-375 CrossRef
    38. Pasello M, Manara MC, Michelacci F, Fanelli M, Hattinger CM, Nicoletti G, Landuzzi L, Lollini PL, Caccuri A, Picci P, Scotlandi K, Serra M (2011) Targeting glutathione-S transferase enzymes in musculoskeletal sarcomas: a promising therapeutic strategy. Anal Cell Pathol (Amst) 34(3):131-45
    39. Dhaini HR, Thomas DG, Giordano TJ, Johnson TD, Biermann JS, Leu K, Hollenberg PF, Baker LH (2003) Cytochrome P450 CYP3A4/5 expression as a biomarker of outcome in osteosarcoma. J Clin Oncol 21(13):2481-485 CrossRef
    40. Scotlandi K (2006) Targeted therapies in Ewing’s sarcoma. Adv Exp Med Biol 587:13-2 CrossRef
    41. Shukla N, Schiffman J, Reed D, Davis IJ, Womer RB, Lessnick SL, Lawlor ER (2013) COG Ewing Sarcoma Biology Committee. Biomarkers in Ewing sarcoma: the Promise and Challenge of Personalized Medicine. A report from the Children’s Oncology Group. Front Oncol 3:141 CrossRef
    42. van Maldegem AM, Hogendoorn PC, Hassan AB (2012) The clinical use of biomarkers as prognostic factors in Ewing sarcoma. Clin Sarcoma Res 2(1):7 CrossRef
    43. Rikhof B, de Jong S, Suurmeijer AJ, Meijer C, van der Graaf WT (2009) The insulin-like growth factor system and sarcomas. J Pathol 217(4):469-82 CrossRef
    44. Olmos D, Martins AS, Jones RL, Alam S, Scurr M, Judson IR (2011) Targeting the insulin-like growth factor 1 receptor in Ewing’s sarcoma: reality and expectations. Sarcoma 2011:402508 CrossRef
    45. Manara MC, Perdichizzi S, Serra M, Pierini R, Benini S, Hattinger CM, Astolfi A, Bagnati R, D’Incalci M, Picci P, Scotlandi K (2005) The molecular mechanisms responsible for resistance to ET-743 (Trabectidin; Yondelis) in the Ewing’s sarcoma cell line, TC-71. Int J Oncol 27(6):1605-616
    46. Kolb EA, Gorlick R (2009) Development of IGF–IR inhibitors in pediatric sarcomas. Curr Oncol Rep 11(4):307-13 CrossRef
    47. Olmos D, Tan DS, Jones RL, Judson IR (2010) Biological rationale and current clinical experience with anti-insulin-like growth factor 1 receptor monoclonal antibodies in treating sarcoma: twenty years from the bench to the bedside. Cancer J 16(3):183-94 CrossRef
    48. O’Neill A, Shah N, Zitomersky N, Ladanyi M, Shukla N, Uren A, Loeb D, Toretsky J (2013) Insulin-like growth factor 1 receptor as a therapeutic target in Ewing sarcoma: lack of consistent upregulation or recurrent mutation and a review of the clinical trial literature. Sarcoma 2013:450478
    49. Garofalo C, Mancarella C, Grilli A, Manara MC, Astolfi A, Marino MT, Conte A, Sigismund S, Carè A, Belfiore A, Picci P, Scotlandi K (2012) Identification of common and distinctive mechanisms of resistance to different anti-IGF–IR agents in Ewing’s sarcoma. Mol Endocrinol 26(9):1603-616 CrossRef
    50. Garofalo C, Manara MC, Nicoletti G, Marino MT, Lollini PL, Astolfi A, Pandini G, López-Guerrero JA, Schaefer KL, Belfiore A, Picci P, Scotlandi K (2011) Efficacy of and resistance to anti-IGF-1R therapies in Ewing’s sarcoma is dependent on insulin receptor signaling. Oncogene 30(24):2730-740 CrossRef
    51. Ahmed AA, Sherman AK, Pawel BR (2012) Expression of therapeutic targets in Ewing sarcoma family tumors. Hum Pathol 43(7):1077-083 CrossRef
    52. Chandhanayingyong C, Kim Y, Staples JR, Hahn C, Lee FY (2012) MAPK/ERK signaling in osteosarcomas, Ewing sarcomas and chondrosarcomas: therapeutic implications and future directions. Sarcoma 2012:404810 CrossRef
    53. Liu C, Zhang Z, Tang H, Jiang Z, You L, Lia Y (2013) Crosstalk between IGF-1R and other tumor promoting pathways. Curr Pharm Des 19:1-0
    54. Wagner MJ, Maki RG (2013) Type 1 insulin-like growth factor receptor targeted therapies in pediatric cancer. Front Oncol 3:9 CrossRef
    55. Mendoza-Naranjo A, El-Naggar A, Wai DH, Mistry P, Lazic N, Ayala FR, da Cunha IW, Rodriguez-Viciana P, Cheng H, Tavares Guerreiro Fregnani JH, Reynolds P, Arceci RJ, Nicholson A, Triche TJ, Soares FA, Flanagan AM, Wang YZ, Strauss SJ, Sorensen PH (2013) ERBB4 confers metastatic capacity in Ewing sarcoma. EMBO Mol Med 5(7):1019-034 CrossRef
    56. Li L, Tibiche C, Fu C, Kaneko T, Moran MF, Schiller MR, Li SS, Wang E (2012) The human phosphotyrosine signaling network: evolution and hotspots of hijacking in cancer. Genome Res 22(7):1222-230 CrossRef
    57. Diaz-Cano SalvadorJ (2012) Tumor heterogeneity: mechanisms and bases for a reliable application of molecular marker design. Int J Mol Sci 13(2):1951-011 CrossRef
    58. Fisher R, Pusztai L, Swanton C (2013) Cancer heterogeneity: implications for targeted therapeutics. Br J Cancer 108(3):479-85 CrossRef
    59. Kurmasheva RT, Dudkin L, Billups C, Debelenko LV, Morton CL, Houghton PJ (2009) The insulin-like growth factor-1 receptor-targeting antibody, CP-751,871, suppresses tumor-derived VEGF and synergizes with rapamycin in models of childhood sarcoma. Cancer Res 69(19):7662-671 CrossRef
    60. Naing A, LoRusso P, Fu S, Hong DS, Anderson P, Benjamin RS, Ludwig J, Chen HX, Doyle LA, Kurzrock R (2012) Insulin growth factor-receptor (IGF-1R) antibody cixutumumab combined with the mTOR inhibitor temsirolimus in patients with refractory Ewing’s sarcoma family tumors. Clin Cancer Res 18(9):2625-631 CrossRef
    61. Huang S, Kauffman S (2013) How to escape the cancer attractor: rationale and limitations of multi-target drugs. Semin Cancer Biol 23(4):270-78
    62. Huang S, Ernberg I, Kauffman S (2009) Cancer attractors: a systems view of tumors from a gene network dynamics and developmental perspective. Semin Cell Dev Biol 20(7):869-76 CrossRef
    63. Csermely P, Korcsmáros T (2013) Cancer-related networks: a help to understand, predict and change malignant transformation. Semin Cancer Biol 23(4):209-12
    64. Subbiah V, Kurzrock R (2012) Ewing’s sarcoma: overcoming the therapeutic plateau. Discov Med 13(73):405-15
  • 作者单位:Atif A. Ahmed (1) (3)
    Hamid Zia (1)
    Lars Wagner (2)

    1. Department of Pathology, University of Missouri, Kansas City, MO, USA
    3. Laboratory Medicine, Department of Pathology, King Fahd Medical City, Riyadh, 11525, Saudi Arabia
    2. Division of Pediatric Hematology/Oncology, University of Kentucky, Lexington, KY, USA
  • ISSN:1432-0843
文摘
Ewing’s sarcoma family tumors are aggressive small round cell malignancies that arise in bone or soft tissues in adolescents and young adults. The addition of chemotherapy to local control measures has remarkably improved the survival of patients with localized disease. However, metastatic tumors are often refractory to conventional chemotherapy and irradiation, and the outcome of patients with metastatic or recurrent disease remains dismal. Despite growing understanding of the molecular biology of this tumor and the discovery of new therapeutic targets such as the insulin growth factor-1 receptor, tumor resistance continues to be a formidable challenge. Numerous adaptive mechanisms have been identified which allow tumor cells to escape the cytotoxic effect of chemotherapeutic agents. This review focuses on these mechanisms in an effort to highlight opportunities for more effective disease control.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700