Decitabine facilitates immune recognition of sarcoma cells by upregulating CT antigens, MHC molecules, and ICAM-1
详细信息    查看全文
  • 作者:Deepa Kolaseri Krishnadas (1)
    Lei Bao (2)
    Fanqi Bai (1)
    Satheesh Cheeyancheri Chencheri (1)
    Kenneth Lucas (1)
  • 关键词:Cancer ; testis antigens ; Decitabine ; MHC molecules ; ICAM ; 1 ; Sarcoma
  • 刊名:Tumor Biology
  • 出版年:2014
  • 出版时间:June 2014
  • 年:2014
  • 卷:35
  • 期:6
  • 页码:5753-5762
  • 全文大小:
  • 参考文献:1. Yu Z, Ren P, Zhang X, Zhang T, Ma B. Therapeutic potential of dendritic cell vaccines in sarcoma of the extremities. Expert Rev Anticancer Ther. 2009;9(8):1065-1. doi:10.1586/era.09.78 . CrossRef
    2. Finkelstein SE, Fishman M, Conley AP, Gabrilovich D, Antonia S, Chiappori A. Cellular immunotherapy for soft tissue sarcomas. Immunotherapy. 2012;4(3):283-0. doi:10.2217/imt.12.3 . CrossRef
    3. Hodi FS, O’Day SJ, McDermott DF, Weber RW, Sosman JA, Haanen JB, et al. Improved survival with ipilimumab in patients with metastatic melanoma. N Engl J Med. 2010;363(8):711-3. doi:10.1056/NEJMoa1003466 . CrossRef
    4. Topalian SL, Hodi FS, Brahmer JR, Gettinger SN, Smith DC, McDermott DF, et al. Safety, activity, and immune correlates of anti-PD-1 antibody in cancer. N Engl J Med. 2012;366(26):2443-4. doi:10.1056/NEJMoa1200690 . CrossRef
    5. Kantoff PW, Higano CS, Shore ND, Berger ER, Small EJ, Penson DF, et al. Sipuleucel-T immunotherapy for castration-resistant prostate cancer. N Engl J Med. 2010;363(5):411-2. doi:10.1056/NEJMoa1001294 . CrossRef
    6. Tanaka H, Yoshizawa H, Yamaguchi Y, Ito K, Kagamu H, Suzuki E, et al. Successful adoptive immunotherapy of murine poorly immunogenic tumor with specific effector cells generated from gene-modified tumor-primed lymph node cells. J Immunol. 1999;162(6):3574-2.
    7. Zou W. Regulatory T cells, tumour immunity and immunotherapy. Nat Rev Immunol. 2006;6(4):295-07. doi:10.1038/nri1806 . CrossRef
    8. Scanlan MJ, Simpson AJ, Old LJ. The cancer/testis genes: review, standardization, and commentary. Cancer Immun. 2004;4:1.
    9. Nicholaou T, Ebert L, Davis ID, Robson N, Klein O, Maraskovsky E, et al. Directions in the immune targeting of cancer: lessons learned from the cancer-testis Ag NY-ESO-1. Immunol Cell Biol. 2006;84(3):303-7. doi:10.1111/j.1440-1711.2006.01446.x . CrossRef
    10. Takahashi K, Shichijo S, Noguchi M, Hirohata M, Itoh K. Identification of MAGE-1 and MAGE-4 proteins in spermatogonia and primary spermatocytes of testis. Cancer Res. 1995;55(16):3478-2.
    11. Jungbluth AA, Silva Jr WA, Iversen K, Frosina D, Zaidi B, Coplan K, et al. Expression of cancer-testis (CT) antigens in placenta. Cancer Immun. 2007;7:15.
    12. Bender A, Karbach J, Neumann A, Jager D, Al-Batran SE, Atmaca A, et al. LUD 00-09: phase 1 study of intensive course immunization with NY-ESO-1 peptides in HLA-A2 positive patients with NY-ESO-1-expressing cancer. Cancer Immun. 2007;7:16.
    13. Jager E, Gnjatic S, Nagata Y, Stockert E, Jager D, Karbach J, et al. Induction of primary NY-ESO-1 immunity: CD8+ T lymphocyte and antibody responses in peptide-vaccinated patients with NY-ESO-1+ cancers. Proc Natl Acad Sci U S A. 2000;97(22):12198-03. doi:10.1073/pnas.220413497 . CrossRef
    14. Chianese-Bullock KA, Pressley J, Garbee C, Hibbitts S, Murphy C, Yamshchikov G, et al. MAGE-A1-, MAGE-A10-, and gp100-derived peptides are immunogenic when combined with granulocyte-macrophage colony-stimulating factor and montanide ISA-51 adjuvant and administered as part of a multipeptide vaccine for melanoma. J Immunol. 2005;174(5):3080-. CrossRef
    15. Krishnadas DK, Shapiro T, Lucas K. Complete remission fllowing decitabine/dendritic cell vaccine for relapsed neuroblastoma. Pediatrics. 2012. doi:10.1542/Peds.2012-0376
    16. Pollack SM, Loggers ET, Rodler ET, Yee C, Jones RL. Immune-based therapies for sarcoma. Sarcoma. 2011;2011:438940. doi:10.1155/2011/438940 . CrossRef
    17. Lee SY, Obata Y, Yoshida M, Stockert E, Williamson B, Jungbluth AA, et al. Immunomic analysis of human sarcoma. Proc Natl Acad Sci U S A. 2003;100(5):2651-. doi:10.1073/pnas.0437972100 . CrossRef
    18. Jungbluth AA, Antonescu CR, Busam KJ, Iversen K, Kolb D, Coplan K, et al. Monophasic and biphasic synovial sarcomas abundantly express cancer/testis antigen NY-ESO-1 but not MAGE-A1 or CT7. Int J Cancer. 2001;94(2):252-. CrossRef
    19. Coral S, Sigalotti L, Gasparollo A, Cattarossi I, Visintin A, Cattelan A, et al. Prolonged upregulation of the expression of HLA class I antigens and costimulatory molecules on melanoma cells treated with 5-aza-2-deoxycytidine (5-AZA-CdR). J Immunother. 1999;22(1):16-4. CrossRef
    20. Adair SJ, Hogan KT. Treatment of ovarian cancer cell lines with 5-aza-2-deoxycytidine upregulates the expression of cancer-testis antigens and class I major histocompatibility complex-encoded molecules. Cancer Immunol Immunother. 2009;58(4):589-01. CrossRef
    21. Schrump DS, Fischette MR, Nguyen DM, Zhao M, Li X, Kunst TF, et al. Phase I study of decitabine-mediated gene expression in patients with cancers involving the lungs, esophagus, or pleura. Clin Cancer Res. 2006;12(19):5777-5. CrossRef
    22. Ayyoub M, Taub RN, Keohan ML, Hesdorffer M, Metthez G, Memeo L, et al. The frequent expression of cancer/testis antigens provides opportunities for immunotherapeutic targeting of sarcoma. Cancer Immun. 2004;4:7.
    23. Blum W, Klisovic RB, Hackanson B, Liu Z, Liu S, Devine H, et al. Phase I study of decitabine alone or in combination with valproic acid in acute myeloid leukemia. J Clin Oncol. 2007;25(25):3884-1. doi:10.1200/JCO.2006.09.4169 . CrossRef
    24. Su S, Vivier RG, Dickson MC, Thomas N, Kendrick MK, Williamson NM, et al. High-throughput RT-PCR analysis of multiple transcripts using a microplate RNA isolation procedure. Biotechniques. 1997;22(6):1107-3.
    25. Tajima K, Obata Y, Tamaki H, Yoshida M, Chen YT, Scanlan MJ, et al. Expression of cancer/testis (CT) antigens in lung cancer. Lung Cancer. 2003;42(1):23-3. CrossRef
    26. Gaugler B, Van den Eynde B, van der Bruggen P, Romero P, Gaforio JJ, De Plaen E, et al. Human gene MAGE-3 codes for an antigen recognized on a melanoma by autologous cytolytic T lymphocytes. J Exp Med. 1994;179(3):921-0. CrossRef
    27. Bao L, Dunham K, Lucas K. MAGE-A1, MAGE-A3, and NY-ESO-1 can be upregulated on neuroblastoma cells to facilitate cytotoxic T lymphocyte-mediated tumor cell killing. Cancer Immunol Immunother. 2011;60(9):1299-07. doi:10.1007/s00262-011-1037-z . CrossRef
    28. Krishnadas DK, Stamer MM, Dunham K, Bao L, Lucas KG. Wilms-tumor 1-specific cytotoxic T lymphocytes can be expanded from adult donors and cord blood. Leuk Res. 2011;35(11):1520-. CrossRef
    29. Chang YC, Chen TC, Lee CT, Yang CY, Wang HW, Wang CC, et al. Epigenetic control of MHC class II expression in tumor-associated macrophages by decoy receptor 3. Blood. 2008;111(10):5054-3. doi:10.1182/blood-2007-12-130609 . CrossRef
    30. Suarez-Alvarez B, Rodriguez RM, Calvanese V, Blanco-Gelaz MA, Suhr ST, Ortega F, et al. Epigenetic mechanisms regulate MHC and antigen processing molecules in human embryonic and induced pluripotent stem cells. PLoS One. 2010;5(4):e10192. doi:10.1371/journal.pone.0010192 . CrossRef
    31. Maeurer MJ, Gollin SM, Storkus WJ, Swaney W, Karbach J, Martin D, et al. Tumor escape from immune recognition: loss of HLA-A2 melanoma cell surface expression is associated with a complex rearrangement of the short arm of chromosome 6. Clin Cancer Res. 1996;2(4):641-2.
    32. Yabe H, Tsukahara T, Kawaguchi S, Wada T, Torigoe T, Sato N, et al. Prognostic significance of HLA class I expression in Ewing’s sarcoma family of tumors. J Surg Oncol. 2011;103(5):380-. doi:10.1002/jso.21829 . CrossRef
    33. D’Angelica M, Tung C, Allen P, Halterman M, Delman K, Delohery T, et al. Herpes simplex virus (HSV)-mediated ICAM-1 gene transfer abrogates tumorigenicity and induces anti-tumor immunity. Mol Med. 1999;5(9):606-6.
    34. Jacobs JF, Brasseur F, Hulsbergen-van de Kaa CA, van de Rakt MW, Figdor CG, Adema GJ, et al. Cancer-germline gene expression in pediatric solid tumors using quantitative real-time PCR. Int J Cancer. 2007;120(1):67-4. doi:10.1002/ijc.22118 . CrossRef
    35. Jungbluth AA, Chen YT, Stockert E, Busam KJ, Kolb D, Iversen K, et al. Immunohistochemical analysis of NY-ESO-1 antigen expression in normal and malignant human tissues. Int J Cancer. 2001;92(6):856-0. doi:10.1002/ijc.1282 . CrossRef
    36. Ries J, Schultze-Mosgau S, Neukam F, Diebel E, Wiltfang J. Investigation of the expression of melanoma antigen-encoding genes (MAGE-A1 to -A6) in oral squamous cell carcinomas to determine potential targets for gene-based cancer immunotherapy. Int J Oncol. 2005;26(3):817-4.
    37. Chou J, Voong LN, Mortales CL, Towlerton AM, Pollack SM, Chen X, et al. Epigenetic modulation to enable antigen-specific T-cell therapy of colorectal cancer. J Immunother. 2012;35(2):131-1. doi:10.1097/CJI.0b013e31824300c7 . CrossRef
    38. Blum W, Garzon R, Klisovic RB, Schwind S, Walker A, Geyer S, et al. Clinical response and miR-29b predictive significance in older AML patients treated with a 10-day schedule of decitabine. Proc Natl Acad Sci U S A. 2010;107(16):7473-. doi:10.1073/pnas.1002650107 . CrossRef
    39. Kantarjian H, Oki Y, Garcia-Manero G, Huang X, O’Brien S, Cortes J, et al. Results of a randomized study of 3 schedules of low-dose decitabine in higher-risk myelodysplastic syndrome and chronic myelomonocytic leukemia. Blood. 2007;109(1):52-. doi:10.1182/blood-2006-05-021162 . CrossRef
    40. Konkankit VV, Kim W, Koya RC, Eskin A, Dam MA, Nelson S, et al. Decitabine immunosensitizes human gliomas to NY-ESO-1 specific T lymphocyte targeting through the Fas/Fas ligand pathway. J Transl Med. 2011;9:192. doi:10.1186/1479-5876-9-192 . CrossRef
    41. Serrano A, Tanzarella S, Lionello I, Mendez R, Traversari C, Ruiz-Cabello F, et al. Rexpression of HLA class I antigens and restoration of antigen-specific CTL response in melanoma cells following 5-aza-2-deoxycytidine treatment. Int J Cancer. 2001;94(2):243-1. CrossRef
    42. Garnett CT, Palena C, Chakraborty M, Tsang KY, Schlom J, Hodge JW. Sublethal irradiation of human tumor cells modulates phenotype resulting in enhanced killing by cytotoxic T lymphocytes. Cancer Res. 2004;64(21):7985-4. doi:10.1158/0008-5472.CAN-04-1525 . CrossRef
    43. Bouillon M, Tessier P, Boulianne R, Destrempe R, Audette M. Regulation by retinoic acid of ICAM-1 expression on human tumor cell lines. Biochim Biophys Acta. 1991;1097(2):95-02. CrossRef
    44. Alexander CL, Edward M, MacKie RM. The role of human melanoma cell ICAM-1 expression on lymphokine activated killer cell-mediated lysis, and the effect of retinoic acid. Br J Cancer. 1999;80(10):1494-00. doi:10.1038/sj.bjc.6690551 . CrossRef
    45. Hayflick JS, Kilgannon P, Gallatin WM. The intercellular adhesion molecule (ICAM) family of proteins. New members and novel functions. Immunol Res. 1998;17(3):313-7. doi:10.1007/BF02786454 . CrossRef
    46. Zamai L, Rana R, Mazzotti G, Centurione L, Di Pietro R, Vitale M. Lymphocyte binding to K562 cells: effect of target cell irradiation and correlation with ICAM-1 and LFA-3 expression. Eur J Histochem. 1994;38 Suppl 1:53-0.
    47. Fonsatti E, Nicolay HJ, Sigalotti L, Calabro L, Pezzani L, Colizzi F, et al. Functional up-regulation of human leukocyte antigen class I antigens expression by 5-aza-2-deoxycytidine in cutaneous melanoma: immunotherapeutic implications. Clin Cancer Res. 2007;13(11):3333-. doi:10.1158/1078-0432.CCR-06-3091 . CrossRef
    48. Perez-Diez A, Joncker NT, Choi K, Chan WF, Anderson CC, Lantz O, et al. CD4 cells can be more efficient at tumor rejection than CD8 cells. Blood. 2007;109(12):5346-4. doi:10.1182/blood-2006-10-051318 . CrossRef
    49. Zippelius A, Batard P, Rubio-Godoy V, Bioley G, Lienard D, Lejeune F, et al. Effector function of human tumor-specific CD8 T cells in melanoma lesions: a state of local functional tolerance. Cancer Res. 2004;64(8):2865-3. CrossRef
    50. Huang H, Li F, Gordon JR, Xiang J. Synergistic enhancement of antitumor immunity with adoptively transferred tumor-specific CD4+ and CD8+ T cells and intratumoral lymphotactin transgene expression. Cancer Res. 2002;62(7):2043-1.
  • 作者单位:Deepa Kolaseri Krishnadas (1)
    Lei Bao (2)
    Fanqi Bai (1)
    Satheesh Cheeyancheri Chencheri (1)
    Kenneth Lucas (1)

    1. Department of Pediatrics, Division of Hematology / Oncology, University of Louisville, Baxter 1, Room 204B, 570 South Preston Street, Louisville, KY, 40202, USA
    2. Department of Pediatrics, Division of Hematology / Oncology, Penn State Hershey Children’s Hospital, Hershey, PA, USA
  • ISSN:1423-0380
文摘
Rhabdomyosarcoma, osteosarcoma, and Ewing’s sarcoma are the most common types of sarcoma in children. Despite standard therapy, nearly one third of the patients with Ewing’s sarcoma relapse, and there are limited options with curative potential. Immunotherapy is a promising approach as it can target tumor-specific antigens that are specifically expressed on tumors while sparing non-malignant cells. We have demonstrated that a demethylating chemotherapeutic drug, 5-aza-2-deoxycytidine (decitabine, DAC) can upregulate the expression of cancer-testis (CT) antigens, MHC molecules, and intracellular cell adhesion molecule-1 on pediatric sarcoma cell lines, resulting in enhanced killing of tumor cells by CT antigen-specific cytotoxic T lymphocytes derived from pediatric sarcoma patients. A significant increase in the mRNA expression levels of MAGE-A1 and MAGE-A3 were found in 70?%, and NY-ESO-1 in 80?% of the sarcoma lines following exposure to pharmacological levels of DAC. The high expression levels of MAGE-A1, MAGE-A3, and NY-ESO-1 were sustained in sarcoma lines and primary tumor lines over 30?days after the cessation of DAC. Furthermore, DAC treatment induced upregulation of MAGE-A1, MAGE-A3, or NY-ESO-1 protein expression in seven of nine lines studied. These studies show that demethylating chemotherapy could be combined with CT antigen-directed immunotherapy for treating pediatric sarcoma.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700