Multiple travelling wave solutions for electrical transmission line model
详细信息    查看全文
  • 作者:A. Sardar ; S. M. Husnine ; S. T. R. Rizvi ; M. Younis ; K. Ali
  • 关键词:The $$(G^{\prime }/G)$$ ( G - G ) ; expansion method ; Tanh method ; Sine–cosine method ; Travelling wave solutions ; Transmission line
  • 刊名:Nonlinear Dynamics
  • 出版年:2015
  • 出版时间:November 2015
  • 年:2015
  • 卷:82
  • 期:3
  • 页码:1317-1324
  • 全文大小:457 KB
  • 参考文献:1.Hong, B.J.: New Jacobi elliptic funtions solutions for the variable-coefficient MKdV equation. Appl. Math. Comput. 215, 2908-913 (2009)MATH MathSciNet CrossRef
    2.Salas, A.H., Gomez, C.A.: Application of the Cole-Hopf transformation for finding exact solutions to several forms of the seventh-order KdV equation. Mathematical Problems Engineering, 2010, Article ID 194329, 14 pages, (2010)
    3.Kim, H., Bae, J.H., Sakthivel, R.: Exact travelling wave solutions of two important nonlinear partial differential equations. Z Naturforsch A 69a, 155-62 (2014)
    4.Helal, M.A., Mehjanna, M.S.: The tanh method and adomain decomposition method for solving the foam drainage equation. Appl. Math. Comput. 190, 599-09 (2007)MATH MathSciNet CrossRef
    5.Wazwaz, A.M.: The tanh method for generalized forms of nonlinear heat conduction and BurgersFisher equations. Appl. Math. Comput. 169, 32138 (2005)
    6.Wazwaz, A.M.: The tanh-coth method: solitons and periodic solutions for the Dodd Bullough-Mikhailov and the Tzitzeica-Dodd-Bullough equations. Chaos Soliton Fractals 25, 5563 (2005)MathSciNet CrossRef
    7.Ali, A.T.: New generalized Jacobi elliptic function rational expansion method. J. Comput. Appl. Math. 235, 4127 (2011)
    8.Naher, H., Abdullah, F.A.: New approach of \((G^{\prime }/G)\) -expansion method and new approach of generalized \((G^{\prime }/G)\) -expansion method for nonlinear evolution equation. AIP Adv. 3, 032116 (2013)CrossRef
    9.He, J.H., Wu, X.H.: Exp-function method for nonlinear wave equations. Chaos Solitons Fractals 30, 700-08 (2006)MATH MathSciNet CrossRef
    10.Savescu, M., Bhrawy, A.H., Alshaery, A.A., Hilal, E.M., Khan, K.R., Mahmood, M.F.: Optical solitons in nonlinear directional couplers with spatio-temporal dispersion. J. Modern Optics 61(5), 441-58 (2014)MathSciNet CrossRef
    11.Bhrawy, A.H., Abdelkawy, M.A., Kumar, S., Johnson, S., Biswas, A.: Solitons and other solutions to quantum zakharovkuznetsov equation in quantum magneto-plasma. Indian J. Phys. 87(5), 455-63 (2013)CrossRef
    12.Razborova, P., Moraru, L., Biswas, A.: Perturbation of dispersive shallow water waves with Rosenau-KdV-RLW equation and power law nonlinearity. Rom. J. Phys. 59, 7- (2014)
    13.Razborova, P., Ahmed, B., Biswas, A.: Solitons, shock waves and conservation laws of Rosenau-KdV-RLW equation with power law nonlinearity- Appl. Math. Inf. Sci. 8(2), 485-91 (2014)MathSciNet CrossRef
    14.Razborova, P., Kara, A.H., Biswas, A.: Additional conservation laws for Rosenau-KdV- RLW equation with power law nonlinearity by Lie symmetry. Nonlinear Dyn. 79, 743-48 (2015)MathSciNet CrossRef
    15.Younis, M.: New exact travelling wave solutions for a class of nonlinear PDEs of fractional order. Math. Sci. Lett. 3(3), 193-97 (2014)CrossRef
    16.Eslami, E., Mirzazadeh, M., Biswas, A.: Soliton solutions of the resonant nonlinear Schrodinger’s equation in optical fibers with time-dependent coefficients by simplest equation approach. J. Mod. Opt. 60(19), 1627-636 (2013)CrossRef
    17.Mirzazadeh, M., Eslami, M.: Exact solutions of the Kudryashov–Sinelshchikov equation and nonlinear telegraph equation via the first integral method. Nonlinear Anal. Modell. Control 17(4), 481-88 (2012)MATH MathSciNet
    18.Nazarzadeh, A., Eslami, M., Mirzazadeh, M.: Exact solutions of some nonlinear partial differential equations using functional variable method. Pramana 81(2), 225-36 (2013)
    19.Eslami, M., Mirzazadeh, M.: Topological 1-soliton solution of nonlinear Schrodinger equation with dual-power law nonlinearity in nonlinear optical fibers. Eur. Phys. J. Plus 128(11), 1- (2013)CrossRef
    20.Eslami, M., Neyrame, A., Ebrahimi, M.: Explicit solutions of nonlinear (2+1)-dimensional dispersive long wave equation. J. King Saud Univ. Sci. 24(1), 69-1 (2012)CrossRef
    21.Mirzazadeh, M., Eslami, M., Biswas, A.: Soliton solutions of the generalized Klein–Gordon equation by using-expansion method. Comput. Appl. Math. 33(3), 831-39 (2014)MATH MathSciNet CrossRef
    22.Younis, M., Rehman, Hur, Iftikhar, M.: Travelling wave solutions to some nonlinear evolution equations. Appl. Math. Comput. 249, 81-8 (2014)MathSciNet CrossRef
    23.Bhrawy, A.H., Abdelkawy, M.A., Hilal, E.M., Alshaery, A.A., Biswas, A.: Solitons, cnoidal waves, snoidal waves and other solutions to whitham
    oer-kaup system. Appl. Math. Inf. Sci. 8(5), 2119-128 (2014)MathSciNet CrossRef
    24.Bhrawy, A.H., Abdelkawy, M.A., Biswas, A.: Cnoidal and snoidalwave solutions to coupled nonlinear wave equations by the extended jacobi’s elliptic function method. Commun. Nonlinear Sci. Numer. Simul. 18(4), 915-25 (2013)
    25.Bhrawy, A.H., Abdelkawy, M.A., Kumar, S., Biswas, A.: Solitons and other solutions to kadomtsev–petviashvili equation of b-type. Rom. J. Phys. 58(7-), 729-48 (2013)MathSciNet
    26.Ebadi, G., Fard, N.Y., Bhrawy, A.H., Kumar, S., Triki, H., Yildirim, A., Biswas, A.: Solitons and other solutions to the (3+1)-dimensional extended kadomts
  • 作者单位:A. Sardar (1)
    S. M. Husnine (1)
    S. T. R. Rizvi (2)
    M. Younis (3)
    K. Ali (2)

    1. Department of Mathematics, National University of Computer and Emerging Sciences, Lahore, Pakistan
    2. Department of Mathematics, COMSATS Institute of Information Technology, Lahore, Pakistan
    3. Centre for Undergraduate Studies, University of Punjab, Lahore, 54590, Pakistan
  • 刊物类别:Engineering
  • 刊物主题:Vibration, Dynamical Systems and Control
    Mechanics
    Mechanical Engineering
    Automotive and Aerospace Engineering and Traffic
  • 出版者:Springer Netherlands
  • ISSN:1573-269X
文摘
In this paper, we find multiple travelling wave solutions using three integration schemes to integrate the model of electrical transmission line. These schemes are \((G^{\prime }/G)\)-expansion method, extended tanh method and sine–cosine method, which are applied with computerized symbolic computation. The different kinds of solutions: solitary, shock, singular, periodic, rational and kink-shaped, are obtained. The corresponding integrability criteria, also known as constraint conditions, naturally emerge from the analysis of the transmission line equation. Keywords The \((G^{\prime }/G)\)-expansion method Tanh method Sine–cosine method Travelling wave solutions Transmission line

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700