microRNA-128 regulates the proliferation and differentiation of bovine skeletal muscle satellite cells by repressing Sp1
详细信息    查看全文
  • 作者:Yang Dai ; Wei Ran Zhang ; Yi Min Wang ; Xin Feng Liu…
  • 关键词:Bovine ; Skeletal muscle satellite cells ; Microrna ; 128 ; Sp1 ; Myogenic differentiation
  • 刊名:Molecular and Cellular Biochemistry
  • 出版年:2016
  • 出版时间:March 2016
  • 年:2016
  • 卷:414
  • 期:1-2
  • 页码:37-46
  • 全文大小:1,718 KB
  • 参考文献:1.Weintraub H (1993) The MyoD family and myogenesis: redundancy, networks, and thresholds. Cell 75:1241–1244CrossRef PubMed
    2.Bartel DP (2004) MicroRNAs-genomics, biogenesis, mechanism, and function. Cell 116:281–297CrossRef PubMed
    3.Meister G, Tuschl T (2004) Mechanisms of gene silencing by double-stranded RNA. Nature 431:343–349CrossRef PubMed
    4.Callis TE, Wang DZ (2008) Taking microRNAs to heart. Trends Mol Med 14:254–260CrossRef PubMed
    5.van Rooij E, Liu N, Olson EN (2008) MicroRNAs flex their muscles. Trends Genet 24:159–166CrossRef PubMed
    6.Chen JF, Mandel EM, Thomson JM, Wu Q, Callis TE, Hammond SM, Conlon FL, Wang DZ (2006) The role of microRNA-1 and microRNA-133 in skeletal muscle proliferation and differentiation. Nat Genet 38:228–233CrossRef PubMed PubMedCentral
    7.Kim HK, Lee YS, Sivaprasad U, Malhotra A, Dutta A (2006) Muscle-specific microRNA miR-206 promotes muscle differentiation. J Cell Biol 174:677–687CrossRef PubMed PubMedCentral
    8.Rao PK, Kumar RM, Farkhondeh M, Baskerville S, Lodish HF (2006) Myogenic factors that regulate expression of muscle-specific microRNAs. Proc Natl Acad Sci USA 103:8721–8726CrossRef PubMed PubMedCentral
    9.Crist CG, Montarras D, Pallafacchina G, Rocancourt D, Cumano A, Conway SJ, Buckingham M (2009) Muscle stem cell behavior is modified by microRNA-27 regulation of Pax3 expression. Proc Natl Acad Sci USA 106:13383–13387CrossRef PubMed PubMedCentral
    10.Ge Y, Sun Y, Chen J (2011) IGF-II is regulated by microRNA-125b in skeletal myogenesis. J Cell Biol 192:69–81CrossRef PubMed PubMedCentral
    11.Liu J, Luo XJ, Xiong AW, Zhang ZD, Yue S, Zhu MS, Cheng SY (2010) MicroRNA-214 promotes myogenic differentiation by facilitating exit from mitosis via down-regulation of proto-oncogene N-ras. J Biol Chem 285:26599–26607CrossRef PubMed PubMedCentral
    12.Naguibneva I, Ameyar-Zazoua M, Polesskaya A, Ait-Si-Ali S, Groisman R, Souidi M, Cuvellier S, Harel-Bellan A (2006) The microRNA miR-181 targets the homeobox protein Hox-A11 during mammalian myoblast differentiation. Nat Cell Biol 8:278–284CrossRef PubMed
    13.Sun Q, Zhang Y, Yang G, Chen X, Zhang Y, Cao G, Wang J, Sun Y, Zhang P, Fan M, Shao N, Yang X (2008) Transforming growth factor-beta-regulated miR-24 promotes skeletal muscle differentiation. Nucleic Acids Res 36:2690–2699CrossRef PubMed PubMedCentral
    14.Wong CF, Tellam RL (2008) MicroRNA-26a targets the histone methyltransferase Enhancer of Zeste homolog 2 during myogenesis. J Biol Chem 283:9836–9843CrossRef PubMed
    15.Zhang J, Ying ZZ, Tang ZL, Long LQ, Li K (2012) MicroRNA-148a promotes myogenic differentiation by targeting the ROCK1 gene. J Biol Chem 287:21093–21101CrossRef PubMed PubMedCentral
    16.Motohashi N, Alexander MS, Shimizu-Motohashi Y, Myers JA, Kawahara G, Kunkel LM (2013) Regulation of IRS1/Akt insulin signaling by microRNA-128a during myogenesis. J Cell Sci 126:2678–2691CrossRef PubMed PubMedCentral
    17.Wang YM, Ding XB, Dai Y, Liu XF, Guo H, Zhang Y (2015) Identification and bioinformatics analysis of miRNAs involved in bovine skeletal muscle satellite cell myogenic differentiation. Mol Cell Biochem 404:113–122CrossRef PubMed
    18.Georgantas RW III, Hildreth R, Morisot S, Alder J, Liu CG, Heimfeld S, Calin GA, Croce CM, Civin CI (2007) CD34+ hematopoietic stem-progenitor cell microRNA expression and function: a circuit diagram of differentiation control. Proc Natl Acad Sci USA 104:2750–2755CrossRef PubMed PubMedCentral
    19.Motohashi N, Alexander MS, Casar JC, Kunkel LM (2012) Identification of a novel microRNA that regulates the proliferation and differentiation in muscle side population cells. Stem Cells Dev 21:3031–3043CrossRef PubMed PubMedCentral
    20.Smirnova L, Gräfe A, Seiler A, Schumacher S, Nitsch R, Wulczyn FG (2005) Regulation of miRNA expression during neural cell specification. Eur J Neurosci 21:1469–1477CrossRef PubMed
    21.Dong Q, Cai N, Tao T, Zhang R, Yan W, Li R, Zhang J, Luo H, Shi Y, Luan W, Zhang Y, You Y, Wang Y, Liu N (2014) An axis involving SNAI1, microRNA-128 and Sp1 modulates glioma progression. PLoS One 9(6):e98651CrossRef PubMed PubMedCentral
    22.Guo CS, Catherine D, Troy AF, Stauffer D, Thayer MJ (2003) Regulation of MyoD activity and muscle cell differentiation by MDM2, pRb, and Sp1. J Biol Chem 278:22615–22622CrossRef PubMed
    23.Zhang T, Jiang T, Zhang F, Li C, Zhou YA, Zhu YF, Li XF (2010) Involvement of p21Waf1/Cip1 cleavage during roscovitine induced apoptosis in non small cell lung cancer cells. Oncol Rep 23(1):239–245PubMed
    24.Dai Y, Wang YM, Zhang WR, Liu XF, Li X, Ding XB, Guo H (2015) The role of microRNA-1 and microRNA-206 in the proliferation and differentiation of bovine skeletal muscle satellite cells. In Vitro Cell Dev Biol-Anim. doi:10.​1007/​s11626-015-9953-4
    25.Buckingham M (1992) Making muscle in mammals. Trends Genet 8:144–149CrossRef PubMed
    26.Emerson CP (1990) Myogenesis and developmental control genes. Curr Opin Cell Biol 2:1065–1075CrossRef PubMed
    27.Olson E (1990) MyoD family: a paradigm for development? Genes Dev 4:1454–1461CrossRef PubMed
    28.Weintraub H, Davis R, Tapscott S, Thayer M, Krause M, Benezra R, Blackwell TK, Turner D, Rupp R, Hollenberg S (1991) The MyoD gene family: nodal point during specification of the muscle cell lineage. Science 251:761–766CrossRef PubMed
    29.Biesiada E, Hamamori Y, Kedes L, Sartorelli V (1999) Myogenic basic helix-loop-helix proteins and Sp1 interact as components of a multiprotein transcriptional complex required for activity of the human cardiac α-actin promoter. Mol Cell Biol 19:2577–2584CrossRef PubMed PubMedCentral
    30.Sartorelli V, Webster KA, Kedes L (1990) Muscle-specific expression of the cardiac α-actin gene requires MyoD1, CArG-box binding factor, and Spl. Genes Dev 4:1811–1822CrossRef PubMed
    31.Kitzmann M, Fernandez A (2001) Crosstalk between cell cycle regulators and the myogenic factor MyoD in skeletal myoblasts. Cell Mol Life Sci 58:571–579CrossRef PubMed
  • 作者单位:Yang Dai (1)
    Wei Ran Zhang (1)
    Yi Min Wang (1)
    Xin Feng Liu (1)
    Xin Li (1)
    Xiang Bin Ding (1)
    Hong Guo (1)

    1. College of Animal Science and Veterinary Medicine, Tianjin Agricultural University, Tianjin, 300384, China
  • 刊物类别:Biomedical and Life Sciences
  • 刊物主题:Life Sciences
    Biochemistry
    Medical Biochemistry
    Oncology
    Cardiology
  • 出版者:Springer Netherlands
  • ISSN:1573-4919
文摘
MicroRNAs (miRNAs) play essential roles in muscle cell proliferation and differentiation. The muscle-specific miRNAs miR-1 and miR-206 have been shown to regulate muscle development and promote myogenic differentiation; however, it is likely that a number of other miRNAs play important roles in regulating myogenesis as well. microRNA-128 (miR-128) has been reported to be highly expressed in brain and skeletal muscle, and we found that miR-128 is also up-regulated during bovine skeletal muscle satellite cell differentiation using microarray analysis and qRT-PCR. However, little is known about the functions of miR-128 in bovine skeletal muscle satellite cell development. In this study, we investigated the biological functions of miR-128 in bovine skeletal muscle cell development. Using a dual-luciferase reporter assay, we confirmed that miR-128 regulates the Sp1 gene. Over-expression of miR-128 reduced Sp1 protein levels and inhibited muscle satellite cell proliferation and differentiation. Inhibition of miR-128 increased Sp1 protein levels and promoted muscle satellite cell differentiation but also suppressed proliferation. Changes in miR-128 and Sp1 expression levels also affected the protein levels of MyoD and CDKN1A. Sp1, an activator of MyoD and a suppressor of CDKN1A, plays an important role in bovine muscle cell proliferation and differentiation. The results of our study reveal a mechanism by which miR-128 regulates bovine skeletal muscle satellite cell proliferation and myogenic differentiation via Sp1.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700