Seasonal evaluation of evapotranspiration fluxes from MODIS satellite and mesoscale model downscaled global reanalysis datasets
详细信息    查看全文
  • 作者:Prashant K. Srivastava ; Dawei Han ; Tanvir Islam…
  • 刊名:Theoretical and Applied Climatology
  • 出版年:2016
  • 出版时间:April 2016
  • 年:2016
  • 卷:124
  • 期:1-2
  • 页码:461-473
  • 全文大小:668 KB
  • 参考文献:Ahmadi A, Han D, Karamouz M, Remesan R (2009) Input data selection for solar radiation estimation. Hydrol Process 23:2754–2764CrossRef
    Allen RG, Pereira LS, Raes D, Smith M (1998) Crop evapotranspiration—guidelines for computing crop water requirements. FAO Irrigation and drainage paper 56. FAO, Rome 300:6541
    Black TL (1994) The new NMC mesoscale Eta model: description and forecast examples. Weather Forecast 9:265–278CrossRef
    Caldwell P, Chin H-NS, Bader DC, Bala G (2009) Evaluation of a WRF dynamical downscaling simulation over California. Clim Chang 95:499–521CrossRef
    Caylor KK, D’Odorico P, Rodriguez-Iturbe I (2006) On the ecohydrology of structurally heterogeneous semiarid landscapes. Water Resour Res 42:7424
    Cleugh HA, Leuning R, Mu Q, Running SW (2007) Regional evaporation estimates from flux tower and MODIS satellite data. Remote Sens Environ 106:285–304CrossRef
    Conrad C, Dech SW, Hafeez M, Lamers J, Martius C, Strunz G (2007) Mapping and assessing water use in a Central Asian irrigation system by utilizing MODIS remote sensing products. Irrig Drain Syst 21:197–218CrossRef
    Courault D, Seguin B, Olioso A (2005) Review on estimation of evapotranspiration from remote sensing data: from empirical to numerical modeling approaches. Irrig Drain Syst 19:223–249CrossRef
    Courtier P, Thépaut JN, Hollingsworth A (1994) A strategy for operational implementation of 4D-Var, using an incremental approach. Q J R Meteorol Soc 120:1367–1387CrossRef
    Cristóbal J, Anderson M (2013) Validation of a meteosat second generation solar radiation dataset over the northeastern Iberian Peninsula. Hydrol Earth Syst Sci 17:163–175CrossRef
    Dee D et al (2011) The ERA-interim reanalysis: configuration and performance of the data assimilation system. Q J R Meteorol Soc 137:553–597CrossRef
    Detto M, Montaldo N, Albertson JD, Mancini M, Katul G (2006) Soil moisture and vegetation controls on evapotranspiration in a heterogeneous Mediterranean ecosystem on Sardinia, Italy. Water Resour Res 42, W08419
    Dudhia J (1989) Numerical study of convection observed during the winter monsoon experiment using a mesoscale two-dimensional model. J Atmos Sci 46:3077–3107CrossRef
    Ghilain N, Arboleda A, Gellens-Meulenberghs F (2011) Evapotranspiration modelling at large scale using near-real time MSG SEVIRI derived data. Hydrol Earth Syst Sci 15:771–786CrossRef
    Gilliland EK, Rowe CM (2007) A comparison of cumulus parameterization schemes in the WRF model. In: Proceedings of the 87th AMS Annual Meeting & 21th Conference on Hydrology, San Antonio, TX, USA, p 2.16
    Gupta M, Srivastava P, Islam T, Ishak A (2014) Evaluation of TRMM rainfall for soil moisture prediction in a subtropical climate. Environ Earth Sci 71:4421–4431. doi:10.​1007/​s12665-013-2837-6 CrossRef
    Heikkilä U, Sandvik A, Sorteberg A (2011) Dynamical downscaling of ERA-40 in complex terrain using the WRF regional climate model. Clim Dyn 37:1551–1564CrossRef
    Hu XM, Nielsen-Gammon JW, Zhang F (2010) Evaluation of three planetary boundary layer schemes in the WRF model. J Appl Meteorol Climatol 49:1831–1844CrossRef
    Ishak AM, Bray M, Remesan R, Han D (2010) Estimating reference evapotranspiration using numerical weather modelling. Hydrol Process 24:3490–3509CrossRef
    Ishak A, Remesan R, Srivastava P, Islam T, Han D (2013) Error correction modelling of wind speed through hydro-meteorological parameters and mesoscale model: a hybrid approach. Water Resour Manag 27:1–23. doi:10.​1007/​s11269-012-0130-1 CrossRef
    Jackson TJ et al (2012) Validation of soil moisture and ocean salinity (SMOS) soil moisture over watershed networks in the US. Geosci Remote Sens IEEE Trans 50:1530–1543CrossRef
    Jang K et al (2010) Mapping evapotranspiration using MODIS and MM5 four-dimensional data assimilation. Remote Sens Environ 114:657–673CrossRef
    Kalivas D, Petropoulos G, Athanasiou I, Kollias V (2013) An intercomparison of burnt area estimates derived from key operational products: the Greek wildland fires of 2005–2007. Nonlinear Process Geophys 20:397–409CrossRef
    Kashyap PS, Panda R (2001) Evaluation of evapotranspiration estimation methods and development of crop-coefficients for potato crop in a sub-humid region. Agric Water Manag 50:9–25CrossRef
    Kustas W, Norman J (1996) Use of remote sensing for evapotranspiration monitoring over land surfaces. Hydrol Sci J 41:495–516CrossRef
    Mesinger F, Black TL (1992) On the impact on forecast accuracy of the step-mountain (eta) vs. sigma coordinate. Meteorog Atmos Phys 50:47–60CrossRef
    Mlawer EJ, Taubman SJ, Brown PD, Iacono MJ, Clough SA (1997) Radiative transfer for inhomogeneous atmospheres: RRTM, a validated correlated-k model for the longwave. J Geophys Res Atmos 102:16663-16682CrossRef
    Monteith J (1965) Evaporation and environment. In: Fogg GE (ed) The state and movement of water in living organisms. Cambridge University Press, Cambridge, pp 205–234
    Morisette JT et al (2006) Validation of global moderate-resolution LAI products: a framework proposed within the CEOS land product validation subgroup. Geosci Remote Sens, IEEE Trans on 44:1804–1817CrossRef
    Mu Q, Heinsch FA, Zhao M, Running SW (2007) Development of a global evapotranspiration algorithm based on MODIS and global meteorology data. Remote Sens Environ 111:519–536CrossRef
    Mu Q, Zhao M, Running SW (2011) Improvements to a MODIS global terrestrial evapotranspiration algorithm. Remote Sens Environ 115:1781–1800CrossRef
    Novák V (2012) Methods of evapotranspiration estimation. Evapotranspiration in the Soil-Plant-Atmosphere System, Progress in Soil Science, XVI, p. 256, Springer Dordrecht
    Penman H (1956) Estimating evaporation. Trans Am Geophys Union 37:43–50CrossRef
    Pereira LS, Allen RG, Smith M, Raes D (2015) Crop evapotranspiration estimation with FAO56: past and future. Agric Water Manag 147:4–20. doi:10.​1016/​j.​agwat.​2014.​07.​031 CrossRef
    Petropoulos GP, Carlson TN, Griffiths H (2013) Turbulent fluxes of heat and moisture at the earth’s land surface: importance, controlling parameters and conventional measurement. Remote Sensing of Energy Fluxes and Soil Moisture Content. Taylor & Francis, Florida, USA. p 562
    Petropoulos GP, Ireland G, Cass A, Srivastava PK (2015) Performance assessment of the SEVIRI evapotranspiration operational product: results over diverse mediterranean ecosystems. IEEE Sensors J. doi:10.​1109/​jsen.​2015.​2390031
    Schwartz CS et al (2009) Next-day convection-allowing WRF model guidance: a second look at 2-km versus 4-km grid spacing. Mon Weather Rev 137:3351–3372CrossRef
    Sivapalan M (2006) Predictions in ungauged basins: promise and progress, vol 303. Press, IAHS
    Sivapalan M et al (2003) IAHS decade on predictions in ungauged basins (PUB), 2003–2012: shaping an exciting future for the hydrological sciences. Hydrol Sci J 48:857–880CrossRef
    Skamarock W, Klemp J, Dudhia J (2001) Prototypes for the WRF (Weather Research and Forecasting) model. In Preprints, Ninth Conf. Mesoscale Processes, J11–J15, American Meteorological Society, Fort Lauderdale, Florida, USA
    Srivastava PK (2013) Soil moisture estimation from SMOS Satellite and mesoscale model for hydrological applications. PhD thesis, University of Bristol, Bristol, UK
    Srivastava P, Han D, Rico-Ramirez M, Al-Shrafany D, Islam T (2013a) Data fusion techniques for improving soil moisture deficit using SMOS satellite and WRF-NOAH land surface model. Water Resour Manag 27:5069–5087. doi:10.​1007/​s11269-013-0452-7
    Srivastava PK, Han D, Ramirez MR, Islam T (2013b) Appraisal of SMOS soil moisture at a catchment scale in a temperate maritime climate. J Hydrol 498:292–304CrossRef
    Srivastava PK, Han D, Ramirez MR, Islam T (2013c) Machine learning techniques for downscaling SMOS satellite soil moisture using MODIS land surface temperature for hydrological application. Water Resour Manag 27:3127–3144. doi:10.​1007/​s11269-013-0337-9 CrossRef
    Srivastava PK, Han D, Rico Ramirez M, Islam T (2013d) Sensitivity and uncertainty analysis of mesoscale model downscaled hydro-meteorological variables for discharge prediction. Hydrol Process 28(15):4419–4432. doi:10.​1002/​hyp.​9946 CrossRef
    Srivastava PK, Han D, Rico Ramirez MA, Islam T (2013e) Comparative assessment of evapotranspiration derived from NCEP and ECMWF global datasets through weather research and forecasting model. Atmos Sci Lett 14:118–125CrossRef
    Taylor KE (2001) Summarizing multiple aspects of model performance in a single diagram. J Geophys Res 106:7183–7192CrossRef
    Temesgen B, Eching S, Davidoff B, Frame K (2005) Comparison of some reference evapotranspiration equations for California. J Irrig Drain Eng 131:73–84CrossRef
    Thakur JK, Srivastava PK, Singh SK, Vekerdy Z (2012) Ecological monitoring of wetlands in semi-arid region of Konya closed Basin, Turkey. Regional Environ Change 12(1):133-144
    Veersé F, Thepaut JN (1998) Multiple-truncation incremental approach for four-dimensional variational data assimilation. Q J R Meteorol Soc 124:1889–1908CrossRef
    Wei H, Xia Y, Mitchell KE, Ek MB (2013) Improvement of the Noah land surface model for warm season processes: evaluation of water and energy flux simulation. Hydrol Process 27:297–303CrossRef
    Wetzel PJ, Chang J-T (1988) Evapotranspiration from nonuniform surfaces: a first approach for short-term numerical weather prediction. Mon Weather Rev 116:600–621CrossRef
    Willmott CJ (1982) Some comments on the evaluation of model performance. Bull Am Meteorol Soc 63:1309–1313CrossRef
    Yoder R, Odhiambo L, Wright W (2005) Evaluation of methods for estimating daily reference crop evapotranspiration at a site in the humid Southeast United States. Appl Eng Agric 21:197–202CrossRef
  • 作者单位:Prashant K. Srivastava (1) (2) (3)
    Dawei Han (3)
    Tanvir Islam (3) (4) (5)
    George P. Petropoulos (6)
    Manika Gupta (7)
    Qiang Dai (3)

    1. Hydrological Sciences, NASA Goddard Space Flight Center, Greenbelt, MD, 20771, USA
    2. Earth System Science Interdisciplinary Center, University of Maryland, College Park, MD, 20742, USA
    3. Department of Civil Engineering, University of Bristol, Bristol, UK
    4. NOAA/NESDIS Center for Satellite Applications and Research, College Park, MD, 20740, USA
    5. Cooperative Institute for Research in the Atmosphere, Colorado State University, Fort Collins, CO, 80523-1375, USA
    6. Department of Geography and Earth Sciences, University of Aberystwyth, Aberystwyth, Dyfed, SY23 3DB, UK
    7. Water Resources, Department of Civil Engineering, IIT Delhi, Delhi, 110 016, India
  • 刊物类别:Earth and Environmental Science
  • 刊物主题:Earth sciences
    Meteorology and Climatology
    Atmospheric Protection, Air Quality Control and Air Pollution
    Climate Change
    Waste Water Technology, Water Pollution Control, Water Management and Aquatic Pollution
  • 出版者:Springer Wien
  • ISSN:1434-4483
文摘
Reference evapotranspiration (ETo) is an important variable in hydrological modeling, which is not always available, especially for ungauged catchments. Satellite data, such as those available from the MODerate Resolution Imaging Spectroradiometer (MODIS), and global datasets via the European Centre for Medium Range Weather Forecasts (ECMWF) reanalysis (ERA) interim and National Centers for Environmental Prediction (NCEP) reanalysis are important sources of information for ETo. This study explored the seasonal performances of MODIS (MOD16) and Weather Research and Forecasting (WRF) model downscaled global reanalysis datasets, such as ERA interim and NCEP-derived ETo, against ground-based datasets. Overall, on the basis of the statistical metrics computed, ETo derived from ERA interim and MODIS were more accurate in comparison to the estimates from NCEP for all the seasons. The pooled datasets also revealed a similar performance to the seasonal assessment with higher agreement for the ERA interim (r = 0.96, RMSE = 2.76 mm/8 days; bias = 0.24 mm/8 days), followed by MODIS (r = 0.95, RMSE = 7.66 mm/8 days; bias = −7.17 mm/8 days) and NCEP (r = 0.76, RMSE = 11.81 mm/8 days; bias = −10.20 mm/8 days). The only limitation with downscaling ERA interim reanalysis datasets using WRF is that it is time-consuming in contrast to the readily available MODIS operational product for use in mesoscale studies and practical applications.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700