Combined ground-penetrating radar (GPR) and electrical resistivity applications exploring groundwater potential zones in granitic terrain
详细信息    查看全文
  • 作者:Sahebrao Sonkamble (1)
    V. Satishkumar (1)
    B. Amarender (1)
    S. Sethurama (1)
  • 关键词:GPR ; MERI ; Granitic terrain ; Saturated fracture ; Drilling ; India
  • 刊名:Arabian Journal of Geosciences
  • 出版年:2014
  • 出版时间:August 2014
  • 年:2014
  • 卷:7
  • 期:8
  • 页码:3109-3117
  • 全文大小:2,349 KB
  • 参考文献:1. Acworth RI (1987) The development of crystalline basement aquifers in a tropical environment. Q J Eng Geol 20:265-72 CrossRef
    2. Annan A (2006) GPR methods for hydrogeological studies. Hydrogeophysics 50:185-13 CrossRef
    3. Annan AP, Cosway SW (1994) GPR frequency selection. 5th Int. Conf. on Ground Penetrating Radar, Waterloo, Ontario, 747-60
    4. Annan AP, Davis JL (1997) Ground penetrating radar—coming of age at last!! In Proceedings of Exploration 97: Fourth Decennial International Conference on Mineral Exploration, edited by A.G. Gubins. pp. 515-22
    5. Benson RC, Glaccum RA, Noel MR (1982) Geophysical techniques for sensing buried wastes and waste migration. Environmental Monitoring Systems Laboratory, Office of Research and Development. U.S. Environmental Protection Agency. Las Vegas, Nevada
    6. Beres M, Haeni FP (1991) Application of ground penetrating radar methods in hydrogeologic studies. Ground Water 29:375-86 CrossRef
    7. Bhattacharya PK, Patra HP (1968) Direct current electrical sounding. Elsevier, Amsterdam
    8. Brewster ML, Annan AP (1994) Ground-penetrating radar monitoring of a controlled DNAPL release: 200 MHz radar. Geophysics 59:1211-221 CrossRef
    9. Busby JP, Merritt JW (1999) Quaternary deformation mapping with ground penetrating radar. J Appl Geophys 41:75-1 CrossRef
    10. Cagnoli B, Ulrych TJ (2001) Singular value decomposition and wavy reflections in ground-penetrating radar images of base surge deposits. J Appl Geophys 48:175-82 CrossRef
    11. Cai J, McMechan G, Fisher M (1996) Application of groundpenetrating radar to investigation of near-surface fault properties in the San Francisco Bay region. Bull Seismol Soc Am 86:1459-470
    12. Camelbeeck T, Meghraoui M (1998) Geological and geophysical evidence for large paleoearthquakes with surface faulting in the Roer Graben (northwest Europe). Geophys J Int 132:347-62 CrossRef
    13. Chandra S, Dewandel B, Dutta S, Ahmed S (2010) Geophysical model of geological discontinuities in a granitic aquifer: analyzing small scale variability of electrical resistivity for groundwater occurrences. J Appl Geophys 71:137-48 CrossRef
    14. Compagnie Generaledi Geophysique (1963) Master curves for electrical sounding, 2nd edn. EAEG, The Hague
    15. Daniels JJ (1996) Surface penetrating radar. The Institution of Electrical Engineers, London
    16. Davis JL, Annan AP (1989) Ground penetrating radar for high resolution mapping of soil and rock stratigraphy. Geophys Prospect 37:531-51 CrossRef
    17. Davis SN, Turk LJ (1964) Optimum depth of wells in crystalline rocks. Ground Water 2(2):6-1 CrossRef
    18. Dehls JF, Olesen O, Olsen L, Blikra L (2000) Neotectonic faulting in northern Norway; the Stuoragurra and Nordmannvikdalen postglacial faults. Quat Sci Rev 19:1447-460 CrossRef
    19. Demanet D, Evers LG, Teerlynck H, Dost B, Jongmans D (2001) Geophysical investigation across the Peel boundary fault (the Netherlands) for a paleoseismological study. Geol Mijnb 80:119-27
    20. Dentith M, O’Neill A, Clark D (2010) Ground penetrating radar as a means of studying palaeofault scarps in a deeply weathered terrain, southwestern Western Australia. J Appl Geophys 72:92-01 CrossRef
    21. Dewandel B, Lachassagne P, Wyns R, Marechal JC, Krishnamurthy NS (2006) A generalized 3-D geological and hydrogeological conceptual model of granite aquifers controlled by single or multiphase weathering. J Hydrol 330:260-84 CrossRef
    22. Eswaran H, Bin WC (1978) A study of deep weathering profile on granite in peninsular Malaysia: I Physico-chemical and micromorphological properties. Soil Sci Soc Am J 42:144-49 CrossRef
    23. Frohlich RK, Kelly WE (1985) The relation between hydraulic transmissivity and transverse resistance in a complicated aquifer of glacial outwash deposits. J Hydrol 79:215-29 CrossRef
    24. Gleick PH, Cohen MJ, Morikawa M, Morrison J, Palaniappan M (2008) The world’s water 2008-009: the biennial report on freshwater resources. Island Press, Washington DC
    25. Grasmueck M (1996) 3-D ground-penetrating radar applied to fracture imaging in gneiss. Geophysics 61:1050-064 CrossRef
    26. Greaves JG, Lesmes DP, Lee ML, Toks?z MN (1996) Velocity variations and water content estimated from multi-offset, ground-penetrating radar. Geophysics 61:683-95 CrossRef
    27. Griffiths DH, Barker RD (1993) Two dimensional imaging modeling in areas of complex geology. J Appl Geophys 20:211-26 CrossRef
    28. Griffiths DH, Turnbull J, Olayinka AI (1990) Two dimensional resistivity mapping with a computer controlled array. First Break 8:121-29
    29. Holser WT, Brown RJS, Roberts FA, Fredrikkson OA, Unterberger RR (1972) Radar logging of a salt dome. Geophysics 37(5):889-06 CrossRef
    30. Holub P, Dumitrescu T (1994) De′tection des cavite′s a` l’aide de mesures e′lectriques et du ge′oradar dans une galerie d’amene′e d’eau. J Appl Geophys 31:185-95 CrossRef
    31. Howard KWF, Hughes M, Charlesworth DL, Ngobi G (1992) Hydrogeologic evaluation of fracture permeability in crystalline basement aquifers of Uganda. Appl Hydrogeol 1:55-5 CrossRef
    32. Hughes LJ (2009) Mapping contaminant-transport structures in karst bedrock with ground-penetrating radar. Geophysics 74(6):B197–B208 CrossRef
    33. Huisman JA, Sperl C, Bouten W, Verstraten JM (2001) Soil water content measurements at different scales: accuracy of time domain reflectometry and ground-penetrating radar. J Hydrol 245:48-8 CrossRef
    34. Hwang YK, Anthony LE, Scott DP, Beth LP (2008) Long-term ground penetrating radar monitoring of a small volume DNAPL release in a natural groundwater flow field. J Contam Hydrol 97:1-2 CrossRef
    35. Jeannin MS, Garambois C, Grégoire D, Jongmans (2006) Multiconfiguration. Alps Geophysics 71(3):B85–B92 CrossRef
    36. Jeffrey E, Patterson, Frederick A, Cook (2002) Successful application of ground penetrating radar in the exploration of gem tourmaline pegmatites of Southern California. Geophys Prospect 50(2):107-17. doi:10.1046/j.1365-2478.2002.00312.x CrossRef
    37. Jordan TE, Baker GS, Henn K, Messier JP (2004) Using amplitude variation with offset and normalized residual polarization analysis of ground penetrating radar data to differentiate an NAPL release from stratigraphic changes. J Appl Geophys 56:41-8 CrossRef
    38. Kim C, Daniels JJ, Guy ED, Radzevicius SJ, Holt J (2000) Residual hydrocarbons in a water saturated medium: a detection strategy using ground penetrating radar. Environ Geosci 7:169-76 CrossRef
    39. Koefoed O (1979) Geosounding principles: resistivity sounding measurements, vol 1. Elsevier, New York
    40. Kovin O (2011) Mapping of evaporite deformation in a potash mine using ground penetrating radar: Upper Kama deposit, Russia. J Appl Geophys 74:131-41 CrossRef
    41. Kuusela-Lahtinen A, Niemi A, Luukkonen A (2003) Flow dimension as an indicator of hydraulic behaviour in site characterization of fractured rock. Ground Water 41(3):33-41 CrossRef
    42. Lane JW, Williams JH, Johnson CD, Savino SDM, Haeni FP (2001) Application of a geophysical btool-boxQ approach to characterization of fractured-rock aquifers: a case study from Norwalk, Connecticut. Proceedings of the Symposium on the Application of Geophysics to Engineering and Environmental Problems (SAGEEP-2001), Denver, Colorado, USA, CD-ROM
    43. Lopes de Castro D, Castelo Branco RMG (2003) 4-D ground penetrating radar monitoring of a hydrocarbon leakage site in Fortaleza (Brazil) during its remediation process: a case history. J Appl Geophys 54:127-44 CrossRef
    44. McClymont AF, Green AG, Streich R, Horstmeyer H, Tronicke J, Nobes DC, Pettinga J, Campbell J, Langridge R (2008) Visualization of active faults using geometric attributes of 3D GPR data: an example from the Alpine Fault Zone. New Zeal Geophys 73(2):B11–B23
    45. McMechan GA, Loucks RG, Mescher P, Zeng X (2002) Characterization of a coalesced, collapsed paleocave reservoir analog using GPR and well-core data. Geophysics 67:1148-158 CrossRef
    46. Orellana E (1972) Prospeccion geolectrica en corriente continua. Ed. Paraninfo, Madrid
    47. Orellana E, Mooney HM (1966) Master tables and curves for vertical electrical sounding over layered structures. Interientia, Madrid
    48. Osama H, Giamou P (1998) Ground penetrating radar for detection of leaks in buried plastic water distribution pipes. In: Papers for 7th Int Conf Ground-Penetrating Radar. Lawrence, Kansas, 783-86
    49. Owen RJ, Gwavava O, Gwaze P (2005) Multi-electrode resistivity survey for groundwater exploration in the Harare greenstone belt, Zimbabwe. Hydrogeol J 14:244-52. doi:10.1007/s10040- 004-0420-7 CrossRef
    50. Patnaik I (2010) Distress situation in dryland areas impacts on livelihood pattern and the coping strategies: a review. Research Unit for Livelihood and Natural Resources, working paper no. 96
    51. Rashed M, Kawamura D, Nemoto H, Miyata T, Nakagawa K (2003) Ground penetrating radar investigations across the Uemachi fault, Osaka, Japan. J Appl Geophy 53:63-5 CrossRef
    52. Rijkswaterstaat (1969) Standard graphs for resistivity prospecting. The Netherlands
    53. Rosemary K (2001) Ground penetrating radar for environmental applications. Annu Rev Earth Planet Sci 29:229-55 CrossRef
    54. Sankaran S, Rangarajan R, Krishnakumar K, Saheb Rao S, Smitha V (2010) Geophysical and tracer studies to detect subsurface chromium contamination and suitable site for waste disposal in Ranipet, Vellore district, Tamil Nadu, India. Environ Earth Sci 60:757-64. doi:10.1007/s12665-009-0213-3
    55. Sankaran S, Sonkamble S, Krishnakumar K, Mondal NC (2012) Integrated approach for demarcating subsurface pollution and saline water intrusion zones in SIPCOT area: a case study from Cuddalore in Southern India. Environ Monit Assess 184:5121-138. doi:10.1007/s10661-011-2327-9 CrossRef
    56. Sénéchal P, Perroud H, Sénéchal G (2000) Interpretation of reflection attributes in a 3-D GPR survey at Vallee d’Ossau, western Pyrenees, France. Geophysics 65(5):1435-445 CrossRef
    57. Sharma A, Rajamani V (2000) Weathering of gneissic rocks in the upper reaches of Cauvery river, south India: implications to neotectonics of the region. Chem Geol 166:203-33 CrossRef
    58. Sonkamble S, Sahya A, Mondal NC, Harikumar P (2012) Appraisal and evolution of hydrochemical processes from proximity basalt and granite areas of Deccan Volcanic Province (DVP) in India. J Hydrol 438-39:181-93. doi:10.1016/j.jhydrol.2012.03.022 CrossRef
    59. Sonkamble S, Chandra S, Nagaiah E, Dar FA, Somvanshi VK, Ahmed S (2013a) Geophysical signatures resolving hydrogeological complexities over hard rock terrain—a study from Southern India. Arab J Geosci. doi:10.1007/s12517-013-0931-4
    60. Sonkamble S, Sethurama S, Krishnakumar K, Dhunde P, Amarender B, Satish Kumar V (2013b) Role of geophysical and hydrogeological techniques in EIA studies to identify TSDF site for industrial waste management. J Geol Soc India 81:472-80 CrossRef
    61. Tardy Y (1971) Characterization of the principal weathering types by the geochemistry of waters from some European and African crystalline massifs. Chem Geol 7:253-71 CrossRef
    62. Taylor R, Howard K (2000) A tectono-geomorphic model of the hydrogeology of deeply weathered crystalline rock: evidence from Uganda. Hydrogeol J 8(3):279-94 CrossRef
    63. Theune U, Rokosh D, Sacchi M, Schmitt D (2006) Mapping fractures with GPR: a case study from Turtle Mountain. Geophysics 71(5):B139–B150 CrossRef
    64. Van Overmeeren RA, Sariowan SV, Gehrels JC (1997) Ground penetrating radar for determining volumetric soil water content; result of comparative measurements at two sites. J Hydrol 197:316-38 CrossRef
    65. Vender Velpen BPA (1988) A computer processing package for D.C. Resistivity interpretation for an IBM compatibles. ITC Jour., Vol. 4, The Netherlands
    66. Wright EP (1992) The hydrogeology of crystalline basement aquifers in Africa. In: EP Wright, W Burgess (Eds.), The hydrogeology of crystalline basement aquifers in Africa vol. 66 (Geological Society Special Publication). Amer Assn of Petroleum Geologists, Tulsa. pp. 1-7
    67. Wyatt DE, Temples TJ (1996) Ground-penetrating radar detection of small-scale channels, joints and faults in the unconsolidated sediments of the Atlantic Coastal Plain. Environ Geol 27:219-25 CrossRef
    68. Wyns R, Gourry JC, Baltassat JM, Lebert F (1999) Caracte′risation multiparame`tres des horizons de subsurface (0-00 m) en contexte de socle alte′re′. In: I. BRGM, IRD, UPMC (Eds.), 2e`me Colloque GEOFCAN, Orle′ans, France, pp. 105-10.
    69. Wyns R, Baltassat JM, Lachassagne P, Legchenko A, Vairon J, Mathieu F (2004) Application of SNMR sounding for groundwater resources mapping in weathered basement rocks. Bull Soc Geol Fr 175(1):21-4 CrossRef
    70. Yetton MD, Nobes DC (1998) Recent vertical offset and nearsurface structure of the Alpine Fault in Westland, New Zealand, from ground penetrating radar profiling. NZ J Geol Geophys 41:485-92 CrossRef
  • 作者单位:Sahebrao Sonkamble (1)
    V. Satishkumar (1)
    B. Amarender (1)
    S. Sethurama (1)

    1. CSIR-National Geophysical Research Institute, Hyderabad, 500 007, India
  • ISSN:1866-7538
文摘
Frequent failures of monsoons have forced to opt the groundwater as the only source of irrigation in non-command areas. Groundwater exploration in granitic terrain of dry land agriculture has been a major concern for farmers and water resource authorities. The hydrogeological complexities and lack of understanding of the aquifer systems have resulted in the failure of a majority of the borehole drillings in India. Hence, a combination of geophysical tools comprising ground-penetrating radar (GPR), multielectrode resistivity imaging (MERI), and vertical electrical sounding (VES) has been employed for pinpointing the groundwater potential zones in dry land agricultural of granitic terrain in India. Results obtained and verified with each other led to the detection of a saturated fracture within the environs. In GPR scanning, a 40-MHz antenna is used with specifications of 5 dielectric constant, 600 scans/nS, and 40?m depth. The anomalies acquired on GPR scans at various depths are confirmed with low-resistivity ranges of 27-0?Ω?m at 23 and 27?m depths obtained from the MERI. Further, drilling with a down-the-hole hammer was carried out at two recommended sites down to 50-0?m depth, which were complimentary of VES results. The integrated geophysical anomalies have good agreement with the drilling lithologs validating the MERI and GPR data. The yields of these bore wells varied from 83 to 130?l/min. This approach is possible and can be replicated by water resource authorities in thrust areas of dry land environs of hard rock terrain around the world.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700