Hexavalent chromium-induced differential disruption of cortical microtubules in some Fabaceae species is correlated with acetylation of α-tubulin
详细信息    查看全文
  • 作者:Eleftherios P. Eleftheriou ; Ioannis-Dimosthenis S. Adamakis…
  • 关键词:Cortical microtubules ; Depolymerization ; Fabaceae ; Hexavalent chromium ; Stabilization ; Tubulin acetylation
  • 刊名:Protoplasma
  • 出版年:2016
  • 出版时间:March 2016
  • 年:2016
  • 卷:253
  • 期:2
  • 页码:531-542
  • 全文大小:5,396 KB
  • 参考文献:Adamakis I-DS, Eleftheriou EP, Rost TL (2008) Effects of sodium tungstate on the ultrastructure and growth of pea (Pisum sativum) and cotton (Gossypium hirsutum) seedlings. Environ Exp Bot 63:416–425. doi:10.​1016/​j.​envexpbot.​2007.​12.​003 CrossRef
    Adamakis I-DS, Panteris E, Eleftheriou EP (2010a) Tungsten affects the cortical microtubules of Pisum sativum root cells: experiments on tungsten–molybdenum antagonism. Plant Biol 12:114–124. doi:10.​1111/​j.​1438-8677.​2009.​00197.​x CrossRef PubMed
    Adamakis I-DS, Panteris E, Eleftheriou EP (2010b) The cortical microtubules are a universal target of tungsten toxicity among land plant taxa. J Biol Res (Thessaloniki) 13:59–66
    Adamakis I-DS, Panteris E, Eleftheriou EP (2011) The fatal effect of tungsten on Pisum sativum L. root cells: indications for endoplasmic reticulum stress-induced programmed cell death. Planta 234:21–34. doi:10.​1007/​s00425-011-1372-5 CrossRef PubMed
    Adamakis I-DS, Panteris E, Cherianidou A, Eleftheriou EP (2013) Effects of bisphenol A on the microtubule arrays of Pisum sativum L. root meristematic cells. Mutat Res Genet Toxicol Environ Mutagen 750:111–120. doi:10.​1016/​j.​mrgentox.​2012.​10.​012 CrossRef
    Adamakis I-DS, Panteris E, Eleftheriou EP (2014) Tungsten disrupts root growth in Arabidopsis thaliana by PIN targeting. J Plant Physiol 171:1174–1187. doi:10.​1016/​j.​jplph.​2014.​04.​010 CrossRef PubMed
    Anderson RA (1997) Chromium as an essential nutrient for humans. Regul Toxicol Pharmacol 26:835–841CrossRef
    Åström H (1992) Acetylated α-tubulin in the pollen tube microtubules. Cell Biol Int Rep 16:871–881CrossRef PubMed
    Baskin TI, Wilson JE, Cork A, Williamson RE (1994) Morphology and microtubule organization in Arabidopsis roots exposed to oryzalin or taxol. Plant Cell Physiol 35:935–942PubMed
    Blancaflor EB, Jones DL, Gilroy S (1998) Alterations in the cytoskeleton accompany aluminum-induced growth inhibition and morphological changes in primary roots of maize. Plant Physiol 118:159–172CrossRef PubMed PubMedCentral
    Degrassi F, Rizzoni M (1982) Micronucleus test in Vicia faba root tips to detect mutagen damage in fresh-water pollution. Mutat Res 97:19–23. doi:10.​1016/​0165-1161(82)90016-4 CrossRef
    Dho S, Camusso W, Mucciarelli M, Fusconi A (2010) Arsenate toxicity on the apices of Pisum sativum L. seedling roots: effects on mitotic activity, chromatin integrity and microtubules. Environ Exp Bot 69:17–23. doi:10.​1016/​j.​envexpbot.​2010.​02.​010 CrossRef
    Dovgalyuk A, Kalynyak T, Blume YB (2003) Heavy metals have a different action from aluminium in disrupting microtubules in Allium cepa meristematic cells. Cell Biol Int 27:193–195. doi:10.​1016/​S1065-6995(02)00334-7 CrossRef PubMed
    Eleftheriou EP (1994) Abnormal structure of protophloem sieve-element cell wall in colchicine-treated roots of Triticum aestivum. Planta 193:266–274CrossRef
    Eleftheriou EP, Adamakis I-DS, Melissa P (2012) Effects of hexavalent chromium on microtubule organization, ER distribution and callose deposition in root tip cells of Allium cepa L. Protoplasma 249:401–416. doi:10.​1007/​s00709-011-0292-3 CrossRef PubMed
    Eleftheriou EP, Adamakis I-DS, Fatsiou M, Panteris E (2013) Hexavalent chromium disrupts mitosis by stabilizing microtubules in Lens culinaris Moench. root tip cells. Physiol Plant 147:169–180. doi:10.​1111/​j.​1399-3054.​2012.​01652.​x CrossRef PubMed
    Eleftheriou EP, Michalopoulou VA, Adamakis I-DS (2015) Aberration of mitosis by hexavalent chromium in some Fabaceae members is mediated by species-specific microtubule disruption. Environ Sci Pollut Res. doi:10.​1007/​s11356-014-3880-x
    Eun S-O, Youn HS, Lee Y (2000) Lead disturbs microtubule organization in the root meristem of Zea mays. Physiol Plant 110:356–365. doi:10.​1111/​j.​1399-3054.​2000.​1100310.​x CrossRef
    Frantzios G, Galatis B, Apostolakos P (2000) Aluminium effects on microtubule organization in dividing root-tip cells of Triticum turgidum. I. Mitotic cells. New Phytol 145:211–224. doi:10.​1046/​j.​1469-8137.​2000.​00580.​x CrossRef
    Frantzios G, Galatis B, Apostolakos P (2001) Aluminium effects on microtubule organization in dividing root-tip cells of Triticum turgidum. II. Cytokinetic cells. J Plant Res 114:157–170. doi:10.​1007/​PL00013979 CrossRef
    Fusconi A, Gallo C, Camusso W (2007) Effects of cadmium on root apical meristems of Pisum sativum L.: cell viability, cell proliferation and microtubule pattern as suitable markers for assessment of stress pollution. Mutat Res 632:9–19. doi:10.​1016/​j.​mrgentox.​2007.​03.​012 CrossRef PubMed
    Giannoutsou E, Galatis B, Zachariadis M, Apostolakos P (2012) Formation of an endoplasmic reticulum ring associated with acetylated microtubules in the angiosperm preprophase band. Cytoskeleton 69:252–265. doi:10.​1002/​cm.​21020 CrossRef PubMed
    Giddings TH Jr, Staehelin LA (1991) Microtubule-mediated control of microfibril deposition: a re-examination of the hypothesis. In: Lloyd CW (ed) The Cytoskeletal basis of plant growth and form. Academic, London, pp 85–99
    Gilmer S, Clay P, MacRae TH, Fowke LC (1999) Acetylated tubulin is found in all microtubule arrays of two species of pine. Protoplasma 207:174–185CrossRef
    Hepler P, Hush JM (1996) Behavior of microtubules in living plant cells. Plant Physiol 112:455–461PubMed PubMedCentral
    Huang RF, Lloyd CW (1999) Gibberellic acid stabilises microtubules in maize suspension cells to cold and simulates acetylation of α-tubulin. FEBS Lett 443:317–320CrossRef PubMed
    Kimbrough DE, Cohen Y, Winer AM, Creelman L, Mabuni C (1999) A critical assessment of chromium in the environment. Crit Rev Environ Sci Technol 29:1–46CrossRef
    Ledbetter MC, Porter KR (1963) A “microtubule” in plant cell fine structure. J Cell Biol 19:239–250CrossRef PubMed PubMedCentral
    LeDizet M, Piperno G (1987) Identification of an acetylation site of Chlamydomonas α-tubulin. Proc Natl Acad Sci U S A 84:5720–5724CrossRef PubMed PubMedCentral
    LeDizet M, Piperno G (1991) Detection of acetylated α-tubulin by specific antibodies. Methods Enzymol 196:264–274CrossRef PubMed
    Linos A, Petralias A, Christophi CA, Chrostoforidou E, Kouroutou P, Stoltidis M, Veloudaki A, Tzala E, Makris KC, Karagas MR (2011) Oral ingestion of hexavalent chromium through drinking water and cancer mortality in an industrial area of Greece—an ecological study. Environ Health 10:50. doi:10.​1186/​1476-069X-10-50 CrossRef PubMed PubMedCentral
    Liu D, Xue P, Meng Q, Zou J, Gu J, Jiang W (2009) Pb/Cu effects on the organization of microtubule cytoskeleton in interphase and mitotic cells of Allium sativum L. Plant Cell Rep 28:695–702. doi:10.​1007/​s00299-009-0669-3 CrossRef PubMed
    Ma T-H, Xu Z, Xu C, McConnell H, Rabago EV, Arreola GA, Zhang H (1995) The improved Allium/Vicia root tip micronucleus assay for clastogenicity of environmental pollutants. Mutat Res 334:185–195. doi:10.​1016/​0165-1161(95)90010-1 CrossRef PubMed
    Mita T, Shibaoka H (1984) Gibberellin stabilizes microtubules in onion leaf sheath cells. Protoplasma 119:100–109CrossRef
    Morejohn LC (1991) The molecular pharmacology of plant tubulin and microtubules. In: Lloyd CW (ed) The cytoskeletal basis of plant growth and form. Academic, London, pp 29–43
    Nriagu JO (1987) Production and uses of chromium. Adv Environ Sci Technol 20:81–103
    Oliveira H (2012) Chromium as an environmental pollutant: insights on induced plant toxicity. J Bot 1(1):1–2. doi:10.​1155/​2012/​375843 CrossRef
    Panda SK (2007) Chromium-mediated oxidative stress and ultrastructural changes in root cells of developing rice seedlings. J Plant Physiol 164:1419–1428. doi:10.​1016/​j.​jplph.​2007.​01.​012 CrossRef PubMed
    Peralta-Videa JR, Lopez ML, Narayan M, Saupe G, Gardea-Torresdey J (2009) The biochemistry of environmental heavy metal uptake by plants: implications for the food chain. Int J Biochem Cell Biol 41:1665–1677CrossRef PubMed
    Perdiz D, Mackeh R, Pous C, Baillet A (2011) The ins and outs of tubulin acetylation: more than just a post-translational modification? Cell Signal 23:763–771. doi:10.​1016/​j.​cellsig.​2010.​10.​014 CrossRef PubMed
    Piperno G, Fuller MT (1985) Monoclonal antibodies specific for an acetylated form of α-tubulin recognize the antigen in cilia and flagella from a variety of organisms. J Cell Biol 101:2085–2094CrossRef PubMed
    Piperno G, LeDizet M, Chang X-J (1987) Microtubules containing acetylated α-tubulin in mammalian cells in culture. J Cell Biol 104:289–302CrossRef PubMed
    Qian X (2004) Mutagenic effects of chromium trioxide on root tip cells of Vicia faba. J Zhejiang Univ (Sci) 5:1570–1576. doi:10.​1631/​jzus.​2004.​1570 CrossRef
    Rodriguez E, Azevedo R, Fernandes P, Santos C (2011) Cr(VI) induces DNA damage, cell cycle arrest and polyploidization: a flow cytometric and comet assay study in Pisum sativum. Chem Res Toxicol 24:1040–1047. doi:10.​1021/​tx2001465 CrossRef PubMed
    Sakiyama M, Shibaoka H (1990) Effects of abscisic acid on the orientation and cold stability of cortical microtubules in epicotyl cells of the dwarf pea. Protoplasma 157:165–171CrossRef
    Schatten G, Simerly C, Asai DJ, Szoke E, Cooke P, Schatten H (1988) Acetylated α-tubulin in microtubules during mouse fertilization and early development. Dev Biol 130:74–86CrossRef PubMed
    Shanker AK, Cervantes C, Loza-Tavera H, Avudainayagam S (2005) Chromium toxicity in plants. Environ Int 31:739–753. doi:10.​1016/​j.​envint.​2005.​02.​003 CrossRef PubMed
    Sheng X, Zhang S, Jiang L, Li K, Gao Y, Li X (2012) Lead stress disrupts the cytoskeleton organization and cell wall construction during Picea wilsonii pollen germination and tube growth. Biol Trace Elem Res 146:86–93. doi:10.​1007/​s12011-011-9212-9 CrossRef PubMed
    Shibaoka H (1974) Involvement of wall microtubules in gibberellin promotion and kinetin inhibition of stem elongation. Plant Cell Physiol 15:255–263
    Shibaoka H (1991) Microtubules and the regulation of cell morphogenesis by plant hormones. In: Lloyd CW (ed) The cytoskeletal basis of plant growth and form. Academic, London, pp 159–168
    Singh HP, Mahajan P, Kaur S, Batish DR, Kohli RK (2013) Chromium toxicity and tolerance in plants. Environ Chem Lett 13:229–254. doi:10.​1007/​s10311-013-0407-5 CrossRef
    Smertenko A, Blume Y, Viklicky V, Opatrny Z, Draber P (1997) Post-translational modifications and multiple tubulin isoforms in Nicotiana tabacum L. cells. Planta 201:349–358CrossRef PubMed
    Stern AH (2010) A quantitative assessment of the carcinogenicity of hexavalent chromium by the oral route and its relevance to human exposure. Environ Res 110:798–807. doi:10.​1016/​j.​envres.​2010.​08.​002 CrossRef PubMed
    Wasteneys GO (2002) Microtubule organization in the green kingdom: chaos or self-order? J Cell Sci 115:1345–1354PubMed
    Webster DR, Borisy GG (1989) Microtubules are acetylated in domains that turn over slowly. J Cell Sci 92:57–65PubMed
    Xu P, Liu D, Jiang W (2009) Cadmium effects on the organization of microtubular cytoskeleton in interphase and mitotic cells of Allium sativum. Biol Plant 53:387–390. doi:10.​1007/​s10535-009-0073-4 CrossRef
    Yuan M, Shaw PJ, Warn RM, Lloyd CW (1994) Dynamic reorientation of cortical microtubules, from transverse to longitudinal, in living plant cells. Proc Natl Acad Sci U S A 91:6050–6053CrossRef PubMed PubMedCentral
  • 作者单位:Eleftherios P. Eleftheriou (1)
    Ioannis-Dimosthenis S. Adamakis (1)
    Vasiliki A. Michalopoulou (1)

    1. Department of Botany, School of Biology, Aristotle University of Thessaloniki, 541 24, Thessaloniki, Greece
  • 刊物类别:Biomedical and Life Sciences
  • 刊物主题:Life Sciences
    Cell Biology
    Plant Sciences
    Zoology
  • 出版者:Springer Wien
  • ISSN:1615-6102
文摘
The effects of hexavalent chromium [Cr(VI)] on the cortical microtubules (MTs) of five species of the Fabaceae family (Vicia faba, Pisum sativum, Vigna sinensis, Vigna angularis, and Medicago sativa) were investigated by confocal laser scanning microscopy after immunolocalization of total tubulin with conventional immunofluorescence techniques and of acetylated α-tubulin with the specific 6-11B-1 monoclonal antibody. Moreover, total α-tubulin and acetylated α-tubulin were quantified by Western immunoblotting and scanning densitometry. Results showed the universality of Cr(VI) detrimental effects to cortical MTs, which proved to be a sensitive and reliable subcellular marker for monitoring Cr(VI) toxicity in plant cells. However, a species-specific response was recorded, and a correlation of MT disturbance with the acetylation status of α-tubulin was demonstrated. In V. faba, MTs were depolymerized at the gain of cytoplasmic tubulin background and displayed low α-tubulin acetylation, while in P. sativum, V. sinensis, V. angularis, and M. sativa, MTs became bundled and changed orientation from perpendicular to oblique or longitudinal. Bundled MTs were highly acetylated as determined by both immunofluorescence and Western immunoblotting. Tubulin acetylation in P. sativum and M. sativa preceded MT bundling; in V. sinensis it followed MT derangement, while in V. angularis the two phenomena coincided. Total α-tubulin remained constant in all treatments. Should acetylation be an indicator of MT stabilization, it is deduced that bundled MTs became stabilized, lost their dynamic properties, and were rendered inactive. Results of this report allow the conclusion that Cr(VI) toxicity disrupts MTs and deranges the MT-mediated functions either by depolymerizing or stabilizing them.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700