Dynamics of HIV infection in lymphoid tissue network
详细信息    查看全文
  • 作者:Shinji Nakaoka ; Shingo Iwami ; Kei Sato
  • 关键词:Mathematical Modeling ; Numerical computation ; HIV infection ; Lymphoid tissue network ; The basic reproduction number ; Combinational drug treatment ; 92B05 ; 92C37 ; 92D25 ; 37N25
  • 刊名:Journal of Mathematical Biology
  • 出版年:2016
  • 出版时间:March 2016
  • 年:2016
  • 卷:72
  • 期:4
  • 页码:909-938
  • 全文大小:1,118 KB
  • 参考文献:Agosto LM, Zhong P, Munro J, Mothes W (2014) Highly active antiretroviral therapies are effective against HIV-1 cell-to-cell transmission. PLoS Pathog 10:e1003982CrossRef
    Alberts B, Johnson A, Lewis J, Raff M, Roberts K, Walter P (2008) Molecular biology of the cell 5E. Garland Science, New York
    Aloisi F, Pujol-Borrell R (2006) Lymphoid neogenesis in chronic inflammatory diseases. Nat Rev Immunol 6:205-217CrossRef
    Arron ST, Ribeiro RM, Gettie A, Bohm R, Blanchard J, Yu J, Perelson AS, Ho DD, Zhang L (2005) Impact of thymectomy on the peripheral T cell pool in rhesus macaques before and after infection with simian immunodeficiency virus. Eur J Immunol 35:46-55CrossRef
    Bajaria SH, Webb G, Cloyd M, Kirschner D (2002) Dynamics of naive and memory CD4+ T lymphocytes in HIV-1 disease progression. J Acquir Immune Defic Syndr 30:41-58CrossRef
    Bajaria SH, Webb G, Kirschner DE (2004) Predicting differential responses to structured treatment interruptions during HAART. Bull Math Biol 66:1093-1118CrossRef
    Bisset LR, Lung TL, Kaelin M, Ludwig E, Dubs RW (2004) Reference values for peripheral blood lymphocyte phenotypes applicable to the healthy adult population in Switzerland. Eur J Haematol 72:203-212CrossRef
    Boyman O, Létourneau S, Krieg C, Sprent J (2009) Homeostatic proliferation and survival of naïve and memory T cells. Eur J Immunol 39:2088-2094CrossRef
    Bronte V, Pittet MJ (2013) The spleen in local and systemic regulation of immunity. Immunity 39:806-818CrossRef
    Casteleyn C, Cornillie P, Van Ginneken C, Simoens P, Van Cruchten S, Vandevelde K, Van den Broeck W (2014) Lymph drainage from the ovine tonsils: an anatomical study of the tonsillar lymph vessels. Anat Histol Embryol 43:482-489CrossRef
    Catalfamo M, Wilhelm C, Tcheung L, Proschan M, Friesen T, Park J-H, Adelsberger J, Baseler M, Maldarelli F, Davey R, Roby G, Rehm C, Lane C (2011) CD4 and CD8 T cell immune activation during chronic HIV infection: roles of homeostasis, HIV, type I IFN, and IL-7. J Immunol 186:2106-2116CrossRef
    Chen HY, Di Mascio M, Perelson AS, Ho DD, Zhang L (2007) Determination of virus burst size in vivo using a single-cycle SIV in rhesus macaques. Proc Natl Acad Sci USA 104:19079-19084CrossRef
    Core Team R (2014) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna
    Costiniuk CT, Jenabian M-A (2014) Cell-to-cell transfer of HIV infection: implications for HIV viral persistence. J Gen Virol 95:2346-2355CrossRef
    Davenport MP, Ribeiro RM, Zhang L, Wilson DP, Perelson AS (2007) Understanding the mechanisms and limitations of immune control of HIV. Immunol Rev 216:164-175CrossRef
    De Boer RJ, Perelson AS (2013) Quantifying T lymphocyte turnover. J Theor Biol 327:45-87CrossRef
    De Boer RJ, Ribeiro RM, Perelson AS (2010) Current estimates for HIV-1 production imply rapid viral clearance in lymphoid tissues. PLoS Comput Biol 6:e1000906CrossRef
    den Braber I, Mugwagwa T, Vrisekoop N, Westera L, Mögling R, de Boer AB, Willems N, Schrijver EHR, Spierenburg G, Gaiser K, Mul E, Otto SA, Ruiter AFC, Ackermans MT, Miedema F, Borghans JAM, de Boer RJ, Tesselaar K (2012) Maintenance of peripheral naive T cells is sustained by thymus output in mice but not humans. Immunity 36:288-297CrossRef
    Diekmann O, Heesterbeek JAP, Metz JAJ (1990) On the definition and the computation of the basic reproduction ratio R0 in models for infectious diseases. J Math Biol 35:503-522MathSciNet
    Eberl G (2005) Inducible lymphoid tissues in the adult gut: recapitulation of a fetal developmental pathway? Nat Rev Immunol 5:413-420CrossRef
    Fletcher CV, Staskus K, Wietgrefe SW, Rothenberger M, Reilly C, Chipman JG, Beilman GJ, Khoruts A, Thorkelson A, Schmidt TE, Anderson J, Perkey K, Stevenson M, Perelson AS, Douek DC, Haase AT, Schacker TW (2014) Persistent HIV-1 replication is associated with lower antiretroviral drug concentrations in lymphatic tissues. Proc Natl Acad Sci USA 111:2307-2312CrossRef
    Frost SD, Dumaurier MJ, Wain-Hobson S, Brown AJ (2001) Genetic drift and within-host metapopulation dynamics of HIV-1 infection. Proc Natl Acad Sci USA 98:6975-6980CrossRef
    Graw F, Regoes RR (2012) Influence of the fibroblastic reticular network on cell-cell interactions in lymphoid organs. PLoS Comput Biol 8:e1002436CrossRef
    Gyllenberg M, Hanski I (1992) Single-species metapopulation dynamics: a structured model. Theor Popul Biol 42:35-61CrossRef MathSciNet MATH
    Gyllenberg M, Metz JA (2001) On fitness in structured metapopulations. J Math Biol 43:545-560CrossRef MathSciNet MATH
    Hale JS, Fink PJ (2009) Back to the thymus: peripheral T cells come home. Immunol Cell Biol 87:58-64CrossRef
    Hanski I, Gilpin M (1997) Metapopulation biology: ecology, genetics and evolution. Academic Press, LondonMATH
    Harris M, Patenaude P, Cooperberg P, Filipenko D, Thorne A, Raboud J, Rae S, Dailey P, Chernoff D, Todd J, Conway B, Montaner JS (1997) Correlation of virus load in plasma and lymph node tissue in human immunodeficiency virus infection. INCAS Study Group. Italy, Netherlands, Canada, Australia, and (United) States. J Infect Dis 176:1388-1392CrossRef
    Hogue IB, Bajaria SH, Fallert BA, Qin S, Reinhart TA, Kirschner DE (2008) The dual role of dendritic cells in the immune response to human immunodeficiency virus type 1 infection. J Gen Virol 89:2228-2239CrossRef
    Jilek BL, Zarr M, Sampah ME, Rabi SA, Bullen CK, Lai J, Shen L, Siliciano RF (2012) A quantitative basis for antiretroviral therapy for HIV-1 infection. Nat Med 18:446-451CrossRef
    Kirschner D, Webb GF, Cloyd M (2000) Model of HIV-1 disease progression based on virus-induced lymph node homing and homing-induced apoptosis of CD4+ lymphocytes. J Acquir Immune Defic Syndr 24:352-362CrossRef
    Kodera M, Grailer JJ, Karalewitz AP-A, Subramanian H, Steeber DA (2008) T lymphocyte migration to lymph nodes is maintained during homeostatic proliferation. Microsc Microanal 14:211-224CrossRef
    Komarova NL, Anghelina D, Voznesensky I, Trinité B, Levy DN, Wodarz D (2013) Relative contribution of free-virus and synaptic transmission to the spread of HIV-1 through target cell populations. Biol Lett 9:20121049CrossRef
    Markowitz M, Louie M, Hurley A, Sun E, Di Mascio M, Perelson AS, Ho DD (2003) A novel antiviral intervention results in more accurate assessment of human immunodeficiency virus type 1 replication dynamics and T-cell decay in vivo. J Virol 77:5037-5038CrossRef
    Metz JA, Gyllenberg M (2001) How should we define fitness in structured metapopulation models? Including an application to the calculation of evolutionarily stable dispersal strategies. Proc Biol Sci 268:499-508CrossRef
    Mueller SN, Germain RN (2009) Stromal cell contributions to the homeostasis and functionality of the immune system. Nat Rev Immunol 9:618-629
    Murooka TT, Deruaz M, Marangoni F, Vrbanac VD, Seung E, von Andrian UH, Tager AM, Luster AD, Mempel TR (2012) HIV-infected T cells are migratory vehicles for viral dissemination. Nature 490:283-287CrossRef
    Murray JM, Kaufmann GR, Hodgkin PD, Lewin SR, Kelleher AD, Davenport MP, Zaunders JJ (2003) Naive T cells are maintained by thymic output in early ages but by proliferation without phenotypic change after age twenty. Immunol Cell Biol 81:487-495CrossRef
    Pabst O (2012) New concepts in the generation and functions of IgA. Nat Rev Immunol 12:821-832CrossRef
    Pellas TC, Weiss L (1990) Deep splenic lymphatic vessels in the mouse: a route of splenic exit for recirculating lymphocytes. Am J Anat 187:347-354CrossRef
    Perelson AS, Nelson PW (1999) Mathematical analysis of HIV-1 dynamics in vivo. SIAM Rev 41:3-44CrossRef MathSciNet MATH
    Perelson AS, Neumann AU, Markowitz M, Leonard JM, Ho DD (1996) HIV-1 dynamics in vivo: virion clearance rate, infected cell life-span, and viral generation time. Science 271:1582-1586CrossRef
    Perelson AS, Essunger P, Cao Y, Vesanen M, Hurley A, Saksela K, Markowitz M, Ho DD (1997) Decay characteristics of HIV-1-infected compartments during combination therapy. Nature 387:188-191CrossRef
    Qatarneh SM, Kiricuta I-C, Brahme A, Tiede U, Lind BK (2006) Three-dimensional atlas of lymph node topography based on the visible human data set. Anat Rec B New Anat 289:98-111CrossRef
    Rabi SA, Laird GM, Durand CM, Laskey S, Shan L, Bailey JR, Chioma S, Moore RD, Siliciano RF (2013) Multi-step inhibition explains HIV-1 protease inhibitor pharmacodynamics and resistance. J Clin Invest 123:3848-3860CrossRef
    Ramratnam B, Bonhoeffer S, Binley J, Hurley A, Zhang L, Mittler JE, Markowitz M, Moore JP, Perelson AS, Ho DD (1999) Rapid production and clearance of HIV-1 and hepatitis C virus assessed by large volume plasma apheresis. Lancet 354:1782-1785CrossRef
    Ribeiro RM, Perelson AS (2007) Determining thymic output quantitatively: using models to interpret experimental T-cell receptor excision circle (TREC) data. Immunol Rev 216:21-34CrossRef
    Ruddle NH (2014) Lymphatic vessels and tertiary lymphoid organs. J Clin Invest 124:953-959CrossRef
    Sathaliyawala T, Kubota M, Yudanin N, Turner D, Camp P, Thome JJC, Bickham KL, Lerner H, Goldstein M, Sykes M, Kato T, Farber DL (2013) Distribution and compartmentalization of human circulating and tissue-resident memory T cell subsets. Immunity 38:187-197CrossRef
    Shen L, Peterson S, Sedaghat AR, McMahon MA, Callender M, Zhang H, Zhou Y, Pitt E, Anderson KS, Acosta EP, Siliciano RF (2008) Dose-response curve slope sets class-specific limits on inhibitory potential of anti-HIV drugs. Nat Med 14:762-766CrossRef
    Sprent J (1973) Circulating T and B lymphocytes of the mouse. I. Migratory properties. Cell Immunol 7:40-59CrossRef
    Sprent J, Basten A (1973) Circulating T and B lymphocytes of the mouse. II. Lifespan. Cell Immunol 7:10-39CrossRef
    Sprent J, Surh CD (2009) Re-entry of mature T cells to the thymus: an epiphenomenon? Immunol Cell Biol 87:46-49CrossRef
    Stacker SA, Williams SP, Karnezis T, Shayan R, Fox SB, Achen MG (2014) Lymphangiogenesis and lymphatic vessel remodelling in cancer. Nat Rev Cancer 14:159-172CrossRef
    Tan JT, Dudl E, LeRoy E, Murray R, Sprent J, Weinberg KI, Surh CD (2001) IL-7 is critical for homeostatic proliferation and survival of naive T cells. Proc Natl Acad Sci USA 98:8732-8737CrossRef
    Textor J, Henrickson SE, Mandl JN, von Andrian UH, Westermann J, de Boer RJ, Beltman JB (2014) Random migration and signal integration promote rapid and robust T cell recruitment. PLoS Comput Biol 10:e1003752CrossRef
    Turley SJ, Fletcher AL, Elpek KG (2010) The stromal and haematopoietic antigen-presenting cells that reside in secondary lymphoid organs. Nat Rev Immunol 10:813-825CrossRef
    van den Driessche P, Watmough J (2002) Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission. Math Biosci 180:29-48CrossRef MathSciNet MATH
    Vrisekoop N, den Braber I, de Boer AB, Ruiter AFC, Ackermans MT, van der Crabben SN, Schrijver EHR, Spierenburg G, Sauerwein HP, Hazenberg MD, de Boer RJ, Miedema F, Borghans JAM, Tesselaar K (2008) Sparse production but preferential incorporation of recently produced naive T cells in the human peripheral pool. Proc Natl Acad Sci USA 105:6115-6120CrossRef
    Weinreich MA, Hogquist KA (2008) Thymic emigration: when and how T cells leave home. J Immunol 181:2265-2270CrossRef
    Westermann J, Pabst R (1990) Lymphocyte subsets in the blood: a diagnostic window on the lymphoid system? Immunol Today 11:406-410CrossRef
  • 作者单位:Shinji Nakaoka (1)
    Shingo Iwami (2)
    Kei Sato (3)

    1. Graduate School of Medicine, The University of Tokyo, Tokyo, 113-0033, Japan
    2. Department of Biology, Kyushu University, Fukuoka, 812-8581, Japan
    3. Institute for Virus Research, Kyoto University, Kyoto, 606-8507, Japan
  • 刊物类别:Mathematics and Statistics
  • 刊物主题:Mathematics
    Mathematical Biology
    Applications of Mathematics
  • 出版者:Springer Berlin / Heidelberg
  • ISSN:1432-1416
文摘
Human immunodeficiency virus (HIV) is a fast replicating ribonucleic acid virus, which can easily mutate in order to escape the effects of drug administration. Hence, understanding the basic mechanisms underlying HIV persistence in the body is essential in the development of new therapies that could eradicate HIV infection. Lymphoid tissues are the primary sites of HIV infection. Despite the recent progress in real-time monitoring technology, HIV infection dynamics in a whole body is unknown. Mathematical modeling and simulations provide speculations on global behavior of HIV infection in the lymphatic system. We propose a new mathematical model that describes the spread of HIV infection throughout the lymphoid tissue network. In order to represent the volume difference between lymphoid tissues, we propose the proportionality of several kinetic parameters to the lymphoid tissues’ volume distribution. Under this assumption, we perform extensive numerical computations in order to simulate the spread of HIV infection in the lymphoid tissue network. Numerical computations simulate single drug treatments of an HIV infection. One of the important biological speculations derived from this study is a drug saturation effect generated by lymphoid network connection. This implies that a portion of reservoir lymphoid tissues to which drug is not sufficiently delivered would inhibit HIV eradication despite of extensive drug injection. Keywords Mathematical Modeling Numerical computation HIV infection Lymphoid tissue network The basic reproduction number Combinational drug treatment

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700