Assessment of existing and new modeling strategies for the simulation of OH* radiation in high-temperature flames
详细信息    查看全文
  • 作者:Thomas Fiala ; Thomas Sattelmayer
  • 关键词:Combustion ; Radiation modeling ; OH* ; Validation
  • 刊名:CEAS Space Journal
  • 出版年:2016
  • 出版时间:March 2016
  • 年:2016
  • 卷:8
  • 期:1
  • 页码:47-58
  • 全文大小:755 KB
  • 参考文献:1.Test case rcm-3: Mascotte single injector 60 bar. In: 2nd International Workshop Rocket Combustion Modeling (2001)
    2.ANSYS FLUENT Theory Guide. ANSYS, INC., release 14.0 edn (2011)
    3.SpectralCalc manual. GATS Inc. http://​www.​spectralcalc.​com (2014)
    4.Atkins, P., de Paula, J.: Physical Chemistry, 10th edn. Oxford University Press, Oxford (2014)
    5.Belles, F.E., Lauver, M.R.: Origin of oh chemiluminescence during the induction period of the H\(_2\) –O\(_2\) reaction behind shock waves. J. Chem. Phys. 40(2), 415–422 (1964). doi:10.​1063/​1.​1725129 CrossRef
    6.Brockhinke, A., Krüger, J., Heusing, M., Letzgus, M.: Measurement and simulation of rotationally-resolved chemiluminescence spectra in flames. Appl. Phys. Lasers Opt. 107(3), 539–549 (2012). doi:10.​1007/​s00340-012-5001-1 CrossRef
    7.Bülter, A., Lenhard, U., Rahmann, U., Kohse-Höinghaus, K., Brockhinke, A.: Laskin: efficient simulation of spectra affected by energy transfer. In: Laser Applications to Chemical and Environmental Analysis, Optical Society of America (2004)
    8.Burcat, A., Ruscic, B.: Third Millennium Ideal Gas and Condensed Phase Thermochemical Database for Combustion with Updates from Active Thermochemical Tables. Tech. Rep. ANL-05/20, Argonne National Laboratory (2005)
    9.Burrows, M.C.: Radiation processes related to oxygen-hydrogen combustion at high pressures. Symp. (Int.) Combust. 10(1), 207–215. doi:10.​1016/​S0082-0784(65)80165-5 , tenth Symposium (International) on Combustion (1965)
    10.Charton, M., Gaydon, A.G.: Excitation of spectra of oh in hydrogen flames and its relation to excess concentrations of free atoms. Proc. R. Soc. Lond. Ser. A Math. Phys. Sci. 245(1240), 84–92 (1958). doi:10.​1098/​rspa.​1958.​0068 CrossRef
    11.Daguse, T., Croonenbroek, T., Rolon, J.C., Darabiha, N., Soufiani, A.: Study of radiative effects on laminar counterflow H\(_2\) /O\(_2\) N\(_2\) diffusion flames. Combust. Flame 106(3), 271–287 (1996). doi:10.​1016/​0010-2180(95)00251-0 CrossRef
    12.Dandy, D.S., Vosen, S.R.: Numerical and experimental studies of hydroxyl radical chemiluminescence in methane-air flames. Combust. Sci. Technol. 82(1), 131–150 (1992). doi:10.​1080/​0010220920895181​6 CrossRef
    13.Dieke, G.H., Crosswhite, H.M.: The ultraviolet bands of OH fundamental data. J. Quant. Spectrosc. Radiat. Transf. 2(2), 97–199 (1962). doi:10.​1016/​0022-4073(62)90061-4 CrossRef
    14.Dimpfl, W.L., Kinsey, J.L.: Radiative lifetimes of OH(A2[Sigma]) and Einstein coefficients for the A-X system of OH and OD. J. Quant. Spectrosc. Radiat. Transf. 21(3), 233–241 (1979). doi:10.​1016/​0022-4073(79)90014-1 CrossRef
    15.Fiala, T.: Radiation from high pressure hydrogen–oxygen flames and its use in assessing rocket combustion instability. PhD thesis, Technische Universität München (2015)
    16.Fiala, T., Sattelmayer, T.: On the use of OH* radiation as a marker for the heat release rate in high-pressure hydrogen–oxygen liquid rocket combustion. In: 49th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit, 2013–3780, doi:10.​2514/​6.​2013-3780 (2013)
    17.Fiala, T., Sattelmayer, T.: A posteriori computation of OH* radiation from numerical simulations in rocket combustion chambers. In: 5th European Conference for Aeronautics and Space Sciences (EUCASS), Munich, doi:10.​13140/​2.​1.​1852.​0966 (2013)
    18.Fiala, T., Nettinger, M., Rieger, F., Kumar, A., Sattelmayer, T.: Emission and absorption measurement in enclosed round jet flames. In: 16th International Symposium on Flow Visualization, Okinawa, Japan, 1138, doi:10.​13140/​2.​1.​3424.​9609 (2014)
    19.Gardiner, W.C., Morinaga, K., Ripley, D.L., Takeyama, T.: Shock-tube study of oh (sigma\(-\) pi) luminescence. Phys Fluids 12(5), I−120−I−124 (1969). doi:10.​1063/​1.​1692590 CrossRef
    20.Gaydon, A.G.: The Spectroscopy of Flames, 2nd edn. Chapman and Hall, London (1974)CrossRef
    21.Gaydon, A.G., Wolfhard, H.G.: The spectrum-line reversal method of measuring flame temperature. Proc. Phys. Soc. Sect. A 65(1), 19 (1952). doi:10.​1088/​0370-1298/​65/​1/​303 CrossRef
    22.Gillis, J.R., Goldman, A., Stark, G., Rinsland, C.P.: Line parameters for the \(a^2\sigma ^+ x^2\pi \) bands of OH. J. Quant. Spectrosc. Radiat. Transf. 68(2), 225–230 (2001). doi:10.​1016/​S0022-4073(00)00011-X CrossRef
    23.Goos, E., Burcat, A.: Overview of thermochemistry and its application to reaction kinetics. In: Rate Constant Calculation for Thermal Reactions, pp. 1–32. Wiley, New York. doi:10.​1002/​9781118166123.​ch1 (2011)
    24.Gutman, D., Lutz, R.W., Jacobs, N.F., Hardwidge, E.A., Schott, G.L.: Shock-tube study of oh chemiluminescence in the hydrogen–oxygen reaction. J. Chem. Phys. 48(12), 5689–5694 (1968). doi:10.​1063/​1.​1668656 CrossRef
    25.Hall, J.M., Petersen, E.L.: An optimized kinetics model for OH chemiluminescence at high temperatures and atmospheric pressures. Int. J. Chem. Kinet. 38(12), 714–724 (2006). doi:10.​1002/​kin.​20196 CrossRef
    26.Hardi, J.S.: Experimental investigation of high frequency combustion instability in cryogenic oxygen–hydrogen rocket engines. PhD thesis, The University of Adelaide (2012)
    27.Hidaka, Y., Takahashi, S., Kawano, H., Suga, M., Gardiner, W.C.: Shock-tube measurement of the rate constant for excited hydroxyl(A2.SIGMA.+) formation in the hydrogen–oxygen reaction. J. Phys. Chem. 86(8), 1429–1433 (1982). doi:10.​1021/​j100397a043 CrossRef
    28.Hossain, A., Nakamura, Y.: A numerical study on the ability to predict the heat release rate using CH* chemiluminescence in non-sooting counterflow diffusion flames. Combust. Flame 161(1), 162–172 (2014). doi:10.​1016/​j.​combustflame.​2013.​08.​021 CrossRef
    29.Huber, K.P., Herzberg, G.: Molecular Spectra and Molecular Structure—IV. Constants of Diatomic Molecules. Van Nostrand Reinhold, New York (1979)
    30.Kaskan, W.E.: Abnormal excitation of OH in H\(_2\) /O\(_2\) /N\(_2\) flames. J. Chem. Phys. 31(4), 944–956 (1959). doi:10.​1063/​1.​1730556 CrossRef
    31.Kathrotia, T., Fikri, M., Bozkurt, M., Hartmann, M., Riedel, U., Schulz, C.: Study of the H+O+M reaction forming OH*: kinetics of OH* chemiluminescence in hydrogen combustion systems. Combust. Flame 157(7), 1261–1273 (2010). doi:10.​1016/​j.​combustflame.​2010.​04.​003 CrossRef
    32.Kee, R.J., Rupley, F.M., Miller, J.A., Coltrin, M.E., Grcar, J.F., Meeks, E., Moffat, H.K., Lutz, A.E., Dixon-Lewis, G., Smooke, M.D., Warnatz, J., Evans, G.H., Larson, R.S., Mitchell, R.E., Petzold, L.R., Reynolds, W.C., Caracotsios, M., Stewart, W.E., Glarborg, P., Wang, C., Adigun, O.: Chemkin Collection. Reaction Design, release 3.6 edn (2000)
    33.Kee, R.J., Coltrin, M.E., Glarborg, P.: Chemically Reacting Flow. Wiley-Interscience, New York (2003)
    34.Koike, T., Morinaga, K.: Further studies of the rate constant for chemical excitation of OH in shock waves. Bull. Chem. Soc. Jpn. 55(1), 52–54 (1982). doi:10.​1246/​bcsj.​55.​52 CrossRef
    35.Lauer, M., Sattelmayer, T.: On the adequacy of chemiluminescence as a measure for heat release in turbulent flames with mixture gradients. J. Eng. Gas Turbines Power 132(6), 061502 (2010). doi:10.​1115/​1.​4000126 CrossRef
    36.Lauer, M., Zellhuber, M., Aul, C.J., Sattelmayer, T.: Determination of the heat release distribution in turbulent flames by a model based correction of OH* chemiluminescence. In: Proceedings of ASME Turbo Expo 2011, GT2011-45105 (2011)
    37.Leo, M.D., Saveliev, A., Kennedy, L.A., Zelepouga, S.A.: OH and CH luminescence in opposed flow methane oxy-flames. Combust. Flame 149(4), 435–447 (2007). doi:10.​1016/​j.​combustflame.​2007.​01.​008 CrossRef
    38.Luque, J., Crosley, D.R.: Transition probabilities in the \(A^2 \Sigma ^+\) - \(X^2 \Pi _i\) electronic system of OH. J. Chem. Phys. 109(2), 439–448 (1998). doi:10.​1063/​1.​476582 CrossRef
    39.Luque, J., Crosley, D.R.: Lifbase 1.9. SRI International (1999)
    40.Mavrodineanu, R., Boiteux, H.: Flame Spectroscopy. Wiley, New York (1965)
    41.Modest, M.F.: Radiative Heat Transfer, 3rd edn. Elsevier, Amsterdam (2013)
    42.Ó Conaire, M., Curran, H.J., Simmie, J.M., Pitz, W.J., Westbrook, C.K.: A comprehensive modeling study of hydrogen oxidation. Int. J. Chem. Kinet. 36(11), 603–622 (2004). doi:10.​1002/​kin.​20036 CrossRef
    43.Paul, P.: A model for temperature-dependent collisional quenching of OH \(A^2 \Sigma ^+\) . J. Quant. Spectrosc. Radiat. Transf. 51(3), 511–524 (1994). doi:10.​1016/​0022-4073(94)90150-3 CrossRef
    44.Petersen, E., Kalitan, D., Rickard, M.: Calibration and chemical kinetics modeling of an oh chemiluminesence diagnostic. In: 39th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit, American Institute of Aeronautics and Astronautics, doi:10.​2514/​6.​2003-4493 (2003)
    45.Petersen, E., Kopp, M., Donato, N., Güthe, F.: Assessment of current chemiluminescence kinetics models at engine conditions. In: Proceedings of ASME Turbo Expo 2011: Power for Land, Sea and Air, GT2011-45914 (2011)
    46.Pohl, S., Jarczyk, M.M., Pfitzner, M.: A real gas laminar flamelet combustion model for the cfd-simulation of lox/gh2 combustion. In: 5th European Combustion Meeting, 86 (2011)
    47.Rothman, L., Gordon, I., Barbe, A., Benner, D., Bernath, P., Birk, M., Boudon, V., Brown, L., Campargue, A., Champion, J.P., Chance, K., Coudert, L., Dana, V., Devi, V., Fally, S., Flaud, J.M., Gamache, R., Goldman, A., Jacquemart, D., Kleiner, I., Lacome, N., Lafferty, W., Mandin, J.Y., Massie, S., Mikhailenko, S., Miller, C., Moazzen-Ahmadi, N., Naumenko, O., Nikitin, A., Orphal, J., Perevalov, V., Perrin, A., Predoi-Cross, A., Rinsland, C., Rotger, M., Šimečková, M., Smith, M., Sung, K., Tashkun, S., Tennyson, J., Toth, R., Vandaele, A., Auwera, J.V.: The HITRAN 2008 molecular spectroscopic database. J. Quant. Spectrosc. Radiat. Transf. 110(9–10), 533–572 (2009). doi:10.​1016/​j.​jqsrt.​2009.​02.​013 CrossRef
    48.Rothman, L., Tashkun, S., Mikhailenko, S., Gordon, I., Babikov, Y.: Hitran on the web. http://​hitran.​iao.​ru/​ (2014)
    49.Sisco, J.C.: Measurement and analysis of an unstable model rocket combustor. PhD thesis, Purdue University (2007)
    50.Smith, G.P., Park, C., Luque, J.: A note on chemiluminescence in low-pressure hydrogen and methane–nitrous oxide flames. Combust. Flame 140(4), 385–389 (2005). doi:10.​1016/​j.​combustflame.​2004.​11.​011 CrossRef
    51.SpectralFit, SAS: Specair 3.0 User manual (2012)
    52.Tamura, M., Berg, P.A., Harrington, J.E., Luque, J., Jeffries, J.B., Smith, G.P., Crosley, D.R.: Collisional quenching of CH(A), OH(A), and NO(A) in low pressure hydrocarbon flames. Combust. Flame 114(3–4), 502–514 (1998). doi:10.​1016/​S0010-2180(97)00324-6 CrossRef
    53.Török, A., Steelant, J., Sattelmayer, T. (2010) Cfd modelling concept for the computation of dynamic heat release in rocket motors. In: Space Propulsion, San Sebastian
  • 作者单位:Thomas Fiala (1)
    Thomas Sattelmayer (1)

    1. Lehrstuhl für Thermodynamik, Technische Universität München, Boltzmannstr. 15, 85747, Garching, Germany
  • 刊物类别:Engineering
  • 出版者:Springer Wien
  • ISSN:1868-2510
文摘
Four methods to calculate OH* radiation from numerical simulations of flames above 2700 K are presented: (1) A state-of-the-art chemiluminescence model: OH* emission is assumed to be proportional to the concentration of an excited sub-species OH*. OH* is implemented in the detailed chemical reaction mechanism. (2) A spectral model: emission and absorption are computed and integrated on a line-by-line basis from the HITRAN data base. (3) An equilibrium filtered radiation model: it provides a very simple way to compute OH* emissivity in a post-processing step. This is a simplification of the chemiluminescence model suitable for high-temperature flames. (4) An extension of the latter model to approximate the influence of self-absorption. The advantages and limitations of all approaches are discussed from a physics-based perspective. Their performances are assessed in a laminar hydrogen–oxygen jet flame at varying pressure. The importance of self-absorption for OH* radiation is analyzed and emphasized. Recommendations for the model selection are given. Keywords Combustion Radiation modeling OH* Validation

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700