Spatial variability of phenology in two irrigated grapevine cultivar growing under semi-arid conditions
详细信息    查看全文
  • 作者:N. Verdugo-Vásquez ; C. Acevedo-Opazo ; H. Valdés-Gómez…
  • 关键词:Vitis vinifera ; Berry maturity ; Within field variability ; Temporal variability ; Management zones ; Climate change
  • 刊名:Precision Agriculture
  • 出版年:2016
  • 出版时间:April 2016
  • 年:2016
  • 卷:17
  • 期:2
  • 页码:218-245
  • 全文大小:1,350 KB
  • 参考文献:Acevedo-Opazo, C., Ortega-Farías, S., Hidalgo, C., Moreno, Y., & Córdova, F. (2005). Effects of different levels of water application in post-setting and post-veraison on wine quality cv. Cabernet Sauvignon. Agricultura Técnica, 65(4), 397–410.
    Acevedo-Opazo, C., Ortega-Farias, S., & Fuentes, S. (2010a). Effects of grapevine (Vitis vinifera L.) water status on water consumption, vegetative growth and grape quality: An irrigation scheduling application to achieve regulated deficit irrigation. Agricultural Water Management, 97(7), 956–964.CrossRef
    Acevedo-Opazo, C., Tisseyre, B., Taylor, J. A., Ojeda, H., & Guillaume, S. (2010b). A model for the spatial prediction of water status in vines (Vitis vinifera L.) using high resolution ancillary information. Precision Agriculture, 11(4), 358–378.CrossRef
    Acevedo-Opazo, C., Valdés-Gómez, H., Taylor, J. A., Avalo, A., Verdugo-Vásquez, N., Araya, M., et al. (2013). Assessment of an empirical spatial prediction model of vine water status for irrigation management in a grapevine field. Agricultural Water Management, 124, 58–68.CrossRef
    Allen, R. G., Pruitt, W. O., Wright, J. L., Howell, T. A., Ventura, F., Snyder, R., et al. (2006). A recommendation on standardized surface resistance for hourly calculation of reference ETo by the FAO56 Penman-Monteith method. Agricultural Water Management, 81(1–2), 1–22.CrossRef
    Baluja, J., Tardaguila, J., Ayestaran, B., & Diago, M. P. (2013). Spatial variability of grape composition in a Tempranillo (Vitis vinifera L.) vineyard over a 3-year survey. Precision Agriculture, 14(1), 40–58.CrossRef
    Barbeau, G., Morlat, R., Asselin, C., Jacquet, A., & Pinard, C. (1998). Behaviour of the Cabernet Franc grapevine variety in varios “Terroirs” of the Loire Valley. Influence of the precocity on the composition of the harvested grapes for a normal climatic year (Example of the year 1988). Journal International Des Sciences de La Vigne et Du Vin, 32(2), 69–81.
    Bonnefoy, C., Quénol, H., Bonnardot, V., Barbeau, G., Madelin, M., Planchon, O., et al. (2012). Temporal and spatial analyses of temperature in a French wine-producing area: The Loire Valley. International Journal of Climatology, 33(8), 1849–1862.CrossRef
    Bramley, R. G. V. (2005). Understanding variability in winegrape production systems 2. Within vineyard variation in quality over several vintages. Australian Journal of Grape and Wine Research, 11(1), 33–42.CrossRef
    Bramley, R. G. V., & Hamilton, R. P. (2004). Understanding variability in winegrape production systems 1. Within vineyard variation in yield over several vintages. Australian Journal of Grape and Wine Research, 10(1), 32–45.CrossRef
    Bramley, R. G. V., Evans, K. J., Dunne, K. J., & Gobbett, D. L. (2011a). Spatial variation in response to “reduced input” spray programs for powdery mildew and botrytis identified through whole-of-block experimentation. Australian Journal of Grape and Wine Research, 17(3), 341–350.CrossRef
    Bramley, R. G. V., Ouzman, J., & Boss, P. K. (2011b). Variation in vine vigour, grape yield and vineyard soils and topography as indicators of variation in the chemical composition of grapes, wine and wine sensory attributes. Australian Journal of Grape and Wine Research, 17(2), 217–229.CrossRef
    Caffarra, A., & Eccel, E. (2010). Increasing the robustness of phenological models for Vitis vinifera cv. Chardonnay. International Journal of Biometeorology, 54(3), 255–267.CrossRef PubMed
    Caffarra, A., & Eccel, E. (2011). Projecting the impacts of climate change on the phenology of grapevine in a mountain area. Australian Journal of Grape and Wine Research, 17(1), 52–61.CrossRef
    Cambardella, C. A., Moorman, T. B., Parkin, T. B., Karlen, D. L., Novak, J. M., Turco, R. F., et al. (1994). Field-scale variability of soil properties in central iowa soils. Soil Science Society of America Journal, 58(5), 1501–1511.CrossRef
    Campbell, P., Bendek, C., & Latorre, B. A. (2007). Riesgo de oídio (Erysiphe necator) de la vid en relación con el desarrollo de los racimos. Ciencia E Investigación Agraria, 34(1), 5–11.CrossRef
    Chuine, I., García de Cortázar-Atauri, I., Kramer, K., & Hänninen, H. (2013). Plant Development Models. In M. D. Schwartz (Ed.), Phenology: An integrative environmental science (pp. 275–293). Dordrecht: Springer.CrossRef
    Coombe, B. G. (1995). Adoption of a system for identifying grapevine growth stages. Australian Journal of Grape and Wine Research, 1(2), 104–110.CrossRef
    Dunn, G. M., & Martin, S. R. (2000). Do temperature conditions at budburst affect flower number in Vitis vinifera L. cv. Cabernet Sauvignon? Australian Journal of Grape and Wine Research, 6(2), 116–124.CrossRef
    Flores, L. (2005). Variabilidad Espacial del Rendimiento de Uva y Calidad del Mosto en Cuarteles de Vid cv. Cabernet Sauvignon y Chardonnay en Respuesta a la Variabilidad de Algunas Propiedades del Suelo. Agricultura Técnica, 65(2), 210–220.CrossRef
    Friend, A. P., Trought, M. C. T., Stushnoff, C., & Wells, G. H. (2011). Effect of delaying budburst on shoot development and yield of Vitis vinifera L. Chardonnay, “Mendoza” after a spring freeze event. Australian Journal of Grape and Wine Research, 17(3), 378–382.CrossRef
    García de Cortázar-Atauri, I., Brisson, N., & Gaudillere, J. P. (2009). Performance of several models for predicting budburst date of grapevine (Vitis vinifera L.). International Journal of Biometeorology, 53(4), 317–326.CrossRef PubMed
    Girona, J., Marsal, J., Mata, M., Del Campo, J., & Basile, B. (2009). Phenological sensitivity of berry growth and composition of Tempranillo grapevines (Vitis vinifera L.) to water stress. Australian Journal of Grape and Wine Research, 15, 268–277.CrossRef
    Gladstones, J. (1992). Viticulture and environment. Adelaide: Winetitles.
    Han, S., Evans, R. G., Schneider, S. M., & Rawlins, S. L. (1996). Spatial variability of soil properties on two center-pivot irrigated fields. In Precision Agriculture (pp. 97–106). American Society of Agronomy, Crop Science Society of America, Soil Science Society of America.
    Irimia, L. M., Patriche, C. V., Bucur, G. M., Quénol, H., & Cotea, V. V. (2015). Spatial distribution of grapes sugar content and its correlations with climate characteristics and climate suitability in the Huşi (Romania) wine growing region. Notulae Botanicae Horti Agrobotanici. doi:10.​15835/​nbha4319673 .
    Jones, G. V., & Davis, R. E. (2000). Climate influences on grapevine phenology, grape composition, and wine production and quality for Bordeaux, France. American Journal of Enology and Viticulture, 51(3), 249–261.
    Jorquera-Fontena, E., & Orrego-Verdugo, R. (2010). Impact of global warming on the phenology of a variety of grapevine grown in southern Chile. Agrociencia, 44(4), 427–435.
    King, P. D., Smart, R. E., & McClellan, D. J. (2014). Within-vineyard variability in vine vegetative growth, yield, and fruit and wine composition of Cabernet Sauvignon in Hawke’s Bay, New Zealand. Australian Journal of Grape and Wine Research, 20, 234–246.CrossRef
    Kunz, T., & Tatham, B. (2012). Localization in wireless sensor networks and anchor placement. Journal of Sensor and Actuator Networks, 1(1), 36–58.CrossRef
    Marta, A., Grifoni, D., Mancini, M., Storchi, P., Zipoli, G., & Orlandini, S. (2010). Analysis of the relationships between climate variability and grapevine phenology in the Nobile di Montepulciano wine production area. The Journal of Agricultural Science, 148(06), 657–666.CrossRef
    Matese, A., Toscano, P., Di Gennaro, S. F., Genesio, L., Vaccari, F. P., Primicerio, J., et al. (2015). Intercomparison of UAV, aircraft and satellite remote sensing platforms for precision viticulture. Remote Sensing, 7, 2971–2990.CrossRef
    Moriondo, M., Bindi, M., Fagarazzi, C., Ferrise, R., & Trombi, G. (2010). Framework for high-resolution climate change impact assessment on grapevines at a regional scale. Regional Environmental Change, 11(3), 553–567.CrossRef
    Mullins, M. G., Bouquet, A., & Williams, L. E. (1992). Biology of the grapevine. New York: Cambridge University Press.
    Nendel, C. (2010). Grapevine bud break prediction for cool winter climates. International Journal of Biometeorology, 54(3), 231–241.CrossRef PubMed
    Ojeda, H., Andary, C., Kraeva, E., Carbonneau, A., & Deloire, A. (2002). Influence of pre-and postveraison water deficit on synthesis and concentration of skin phenolic compounds during berry growth of Vitis vinifera cv. Shiraz. American Journal of Enology and Viticulture, 53(4), 261–267.
    Ortega-Farías, S., Lozano, P., Moreno, Y., & León, L. (2002). Development of models for predicting phenology and evolution of madurity in cv. Cabernet Sauvignon and Chardonnay grapevines. Agricultura Técnica, 62(1), 27–37.CrossRef
    Parker, A. K., García de Cortázar-Atauri, I., Van Leeuwen, C., & Chuine, I. (2011). General phenological model to characterise the timing of flowering and veraison of Vitis vinifera L. Australian Journal of Grape and Wine Research, 17(2), 206–216.CrossRef
    Parker, A. K., Hofmann, R. W., van Leeuwen, C., McLachlan, A. R. G., & Trought, M. C. T. (2014). Leaf area to fruit mass ratio determines the time of veraison in Sauvignon Blanc and Pinot Noir grapevines. Australian Journal of Grape and Wine Research, 20(3), 422–431.CrossRef
    Petrie, P. R., & Sadras, V. O. (2008). Advancement of grapevine maturity in Australia between 1993 and 2006: putative causes, magnitude of trends and viticultural consequences. Australian Journal of Grape and Wine Research, 14(1), 33–45.CrossRef
    Primicerio, J., Matese, A., Di Gennaro, S. F., Albanese, L., Guidoni, S., & Gay, P. (2013). Development of an integrated, low-cost and open-source system for precision viticulture: From UAV to WSN. In EFITA-WCCA-CIGR Conference “Sustainable Agriculture through ICT Innovation” Turin, Italy (pp. 24–27).
    Quénol, H. (2013). Analyse du climat aux échelles locales dans le contexte du changement climatique. Revue Pollution Atmosphérique. Climat, santé, societé. Nº espécial climat - Juin.
    Quénol, H., & Bonnardot, V. (2014). A multi-scale climatic analysis of viticultural terroirs in the context of climate change: The “TERADCLIM” project. Spécial Laccave. Journal International des Sciences de la Vigne et du Vin, 25–34.
    Quénol, H., Grosset, M., Barbeau, G., Van Leeuwen, K., Hofmann, M., & Foss Miranda, C. (2014). Adapatation of viticulture to climate change: High resolution observations of adaptation scenarii for viticulture : The ADVICLIM European Project. Bulletin de l’OIV, 87, 395–406.
    Sadras, V. O., & Petrie, P. R. (2012). Predicting the time course of grape ripening. Australian Journal of Grape and Wine Research, 18(1), 48–56.CrossRef
    Saporta, G. (1990). Probabilité, analyse des données et statistique. Analyse des données et statistiques. Editions Technip (Vol. Ed. Techni).
    Soil Survey Staff. (1999). A basic system of soil classification for making and interpreting soil surveys second ed. Soil use and management (Vol. 17). Blackwell Publishing Ltd.
    Tardaguila, J., Baluja, J., Arpon, L., Balda, P., & Oliveira, M. (2011). Variations of soil properties affect the vegetative growth and yield components of “Tempranillo” grapevines. Precision Agriculture, 12, 762–773.CrossRef
    Tesic, D., Woolley, D. J., Hewett, E. W., & Martin, D. J. (2001). Environmental effects on cv Cabernet Sauvignon (Vitis vinifera L.) grown in Hawke’ s Bay, New Zealand. 1. Phenology and characterisation of viticultural environments. Australian Journal of Grape and Wine Research, 8(1), 15–26.CrossRef
    Thornley, J. H. M., & Johnson, I. R. (1990). Plant and crop modelling. New York: Oxford University Press.
    Tisseyre, B., Mazzoni, C., & Fonta, H. (2008). Whithin-field temporal stability of some parameters in viticulture: Potential toward a site specific management. Journal International Des Sciences de La Vigne et Du Vin, 42(1), 27–39.
    Trought, M. C. T., & Bramley, R. G. V. (2011). Vineyard variability in Marlborough, New Zealand: Characterising spatial and temporal changes in fruit composition and juice quality in the vineyard. Australian Journal of Grape and Wine Research, 17(1), 79–89.CrossRef
    Valdés-Gómez, H., Gary, C., Cartolaro, P., Lolas-Caneo, M., & Calonnec, A. (2011a). Powdery mildew development is positively influenced by grapevine vegetative growth induced by different soil management strategies. Crop Protection, 30(9), 1168–1177.CrossRef
    Valdés-Gómez, H., Brisson, N., Acevedo-Opazo, C., Gary, C., & Ortega-Farías, S. (2011b). Modelling the effects of Niño and Niña events on water balance of grapevine (cv. Cabernet Sauvignon) in Central valley of Chile. Sixth international symposium on irrigation of horticultural crops. Acta Horticulturae, 889, 159–166.CrossRef
    Webb, L. B., Whetton, P. H., & Barlow, E. W. R. (2007). Modelled impact of future climate change on the phenology of winegrapes in Australia. Australian Journal of Grape and Wine Research, 13, 165–175.CrossRef
    Webster, R., & Oliver, M. A. (1992). Sample adequately to estimate variograms of soil properties. Journal of Soil Science, 43(1), 177–192.CrossRef
    Webster, R., & Oliver, M. (2001). Geostatistics for environmental scientists. Statistics in practice. Chichester: Wiley.
    Winkler, A., Cook, J., Kliewer, W., & Lider, L. (1974). General Viticulture (2nd ed.). California: University of California.
    Wu, C., Wu, J., Luo, Y., Zhang, L., & DeGloria, S. (2008). Spatial prediction of soil organic matter content using cokriging with remotely sensed data. Soil Science Society of America Journal, 73(4), 1202–1208.CrossRef
  • 作者单位:N. Verdugo-Vásquez (1)
    C. Acevedo-Opazo (1)
    H. Valdés-Gómez (1)
    M. Araya-Alman (1)
    B. Ingram (2)
    I. García de Cortázar-Atauri (3)
    B. Tisseyre (4)

    1. Facultad de Ciencias Agrarias, CITRA, Universidad de Talca, 2 Norte, 685, Talca, Chile
    2. Facultad de Ingeniería, Universidad de Talca, Camino a Los Niches Km 1, Curicó, Chile
    3. INRA, US 1116 AGROCLIM, 84914, Avignon, France
    4. Montpellier SupAgro/Irstea, UMR ITAP, Bât. 21, 2 Pl. Pierre Viala, 34060, Montpellier, France
  • 刊物类别:Earth and Environmental Science
  • 刊物主题:Environment
    Soil Science and Conservation
    Agriculture
    Meteorology and Climatology
    Statistics for Engineering, Physics, Computer Science, Chemistry and Geosciences
    Remote Sensing and Photogrammetry
  • 出版者:Springer Netherlands
  • ISSN:1573-1618
文摘
Knowledge and monitoring of the grapevine phenology during the season are important requirements for characterization of productive regions, climate change studies and planning of various production activities at the vine field scale. This work aims at studying the spatial variability of grapevine phenology at the within field scale. It was conducted on two fields, one of cv Cabernet Sauvignon of 1.56 ha and the other of cv Chardonnay of 1.66 ha, both located in Maule Valley, Chile. Within each vine field, a regular sampling grid was designed, to carry out weekly measurements of phenology and maturation. The main results show that there is a significant spatial variability in the phenological development and maturation at the within field scale for both fields. This variability is spatially organised and temporally stable from the beginning of the season (post-budburst) to harvest and over the years. A cluster analysis allowed us to define two clearly contrasted zones in terms of phenology and maturation in both fields, explained by the microclimate. The magnitude of difference between zones varied from 4 to 9 days depending on phenological stages and from 5 to 43 days for maturation. These differences are similar and comparable to that observed at larger scales or under scenarios of climate change. These results highlight the necessity to better take into account this variability to improve sampling and to base decisions of production activities (spraying, harvest, pruning, etc.) application on more relevant information. Further investigations should determine the environmental factors that determine the observed spatial variability.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700