A physical map of the heterozygous grapevine 'Cabernet Sauvignon' allows mapping candidate genes for disease resistance
详细信息    查看全文
  • 作者:Marco Moroldo (1)
    Sophie Paillard (1) (2)
    Raffaella Marconi (3)
    Legeai Fabrice (4)
    Aurelie Canaguier (1)
    Corinne Cruaud (5)
    Veronique De Berardinis (5)
    Cecile Guichard (1)
    Veronique Brunaud (1)
    Isabelle Le Clainche (1)
    Simone Scalabrin (6) (7)
    Raffaele Testolin (3) (7)
    Gabriele Di Gaspero (3) (7)
    Michele Morgante (3) (7)
    Anne-Francoise Adam-Blondon (1)
  • 刊名:BMC Plant Biology
  • 出版年:2008
  • 出版时间:December 2008
  • 年:2008
  • 卷:8
  • 期:1
  • 全文大小:2297KB
  • 参考文献:1. Jaillon O, Aury J-M, Noel B, Policriti A, Clepet C, Casagrande A, Choisne N, Aubourg S, Vitulo N, Jubin C, Vezzi A, Legeai F, Hugueney P, Dasilva C, Horner D, Mica E, Jublot D, Poulain J, Bruyere C, Billault A, Segurens B, Gouyvenoux M, Ugarte E, Cattonaro F, Anthouard V, Vico V, Del Fabbro C, Alaux M, Di Gaspero G, Dumas V, Felice N, Paillard S, Juman I, Moroldo M, Scalabrin S, Canaguier A, Le Clainche I, Malacrida G, Durand E, Pesole G, Laucou V, Chatelet P, Merdinoglu D, Delledonne M, Pezzotti M, Lecharny A, Scarpelli C, Artiguenave F, P茅 E, Valle G, Morgante M, Caboche M, Adam-Blondon A-F, Weissenbach J, Qu茅tier F, Wincker P: The grapevine genome sequence suggests ancestral hexaploidization in major angiosperm phyla. / Nature 2007, 449:463鈥?68. CrossRef
    2. Barker CL, Donald T, Pauquet J, Ratnaparkhe A, Bouquet A, Adam-Blondon A-F, Thomas MR, Dry I: Genetic and physical mapping of the grapevine powdery mildew resistance gene, Run1 , using a bacterial artificial chromosome library. / Theor Appl Genet 2005, 111:370鈥?77. CrossRef
    3. Castellarin SD, Di Gaspero G, Marconi R, Nonis A, Peterlunger E, Paillard S, Adam-Blondon A-F, Testolin R: Colour variation in red grapevines ( Vitis vinifera L.): genomic organisation, expression of flavonoid 3'-hydroxylase, flavonoid 3',5'-hydroxylase genes and related metabolite profiling of red cyanidin-/blue delphinidin-based anthocyanins in berry skin. / BMC Genomics 2007, 7:12. CrossRef
    4. Gu YQ, Salse J, Coleman-Derr D, Dupin A, Crossman C, Lazo GR, Huo N, Belcram H, Ravel C, Charmet G, Charles M, Anderson OD, Chalhoub B: Types and rates of sequence evolution at the high-molecular-weight glutenin locus in hexaploid wheat and its ancestral genomes. / Genetics 2006, 174:1493鈥?504. CrossRef
    5. Mozo T, Dewar K, Dunn P, Ecker JR, Fischer S, Kloska S, Lehrach H, Marra M, Martienssen R, Meier-Ewert S, Altmann T: A complete BAC-based physical map of the Arabidopsis thaliana genome. / Nat Genet 1999, 22:271鈥?75. CrossRef
    6. Klein PE, Klein RR, Cartinhour SW, Ulanch PE, Dong J, Obert JA, Morishige DT, Schlueter SD, Childs KL, Ale M, Mullet JE: A high-throughput AFLP-based method for constructing integrated genetic and physical maps: progress toward a sorghum genome map. / Genome Res 2000, 10:789鈥?07. CrossRef
    7. Chen M, Presting G, Barbazuk WB, Goicoechea JL, Blackmon B, Fang G, Kim H, Frisch D, Yu Y, Sun S, Higingbottom S, Phimphilai J, Phimphilai D, Thurmond S, Gaudette B, Li P, Liu J, Hatfield J, Main D, Farrar K, Henderson C, Barnett L, Costa R, Williams B, Walser S, Atkins M, Hall C, Budiman MA, Tomkins JP, Luo M, Bancroft I, Salse J, Regad F, Mohapatra T, Singh NK, Tyagi AK, Soderlund C, Dean RA, Wing RA: An integrated physical and genetic map of the rice genome. / Plant Cell 2002, 14:537鈥?45. CrossRef
    8. Wu C, Sun S, Nimmakayala P, Santos FA, Meksem K, Springman R, Ding K, Lightfoot DA, Zhang HB: A BAC- and BIBAC-based physical map of the soybean genome. / Genome Res 2004, 14:319鈥?26. CrossRef
    9. Han Y, Gasic K, Marron B, Beever JE, Korban SS: A BAC-based physical map of the apple genome. / Genomics 2007, 89:630鈥?37. CrossRef
    10. Kelleher CT, Chiu R, Shin H, Bosdet IE, Krzywinski MI, Fjell CD, Wilkin J, Yin T, DiFazio SP, Ali J, Asano JK, Chan S, Cloutier A, Girn N, Leach S, Lee D, Mathewson CA, Olson T, O'connor K, Prabhu AL, Smailus DE, Stott JM, Tsai M, Wye NH, Yang GS, Zhuang J, Holt RA, Putnam NH, Vrebalov J, Giovannoni JJ, Grimwood J, Schmutz J, Rokhsar D, Jones SJ, Marra MA, Tuskan GA, Bohlmann J, Ellis BE, Ritland K, Douglas CJ, Schein JE: A physical map of the highly heterozygous Populus genome: integration with the genome sequence and genetic map and analysis of haplotype variation. / Plant J 2007, 50:1063鈥?078. CrossRef
    11. Troggio M, Malacarne G, Coppola G, Segala C, Cartwright DA, Pindo M, Stefanini M, Mank R, Moroldo M, Morgante M, Grando MS, Velasco R: A dense single-nucleotide polymorphism-based genetic linkage map of grapevine ( Vitis vinifera L.) anchoring Pinot Noir bacterial artificial chromosome contigs. / Genetics 2007, 176:2637鈥?650. CrossRef
    12. Meyers BC, Scalabrin S, Morgante M: Mapping and sequencing complex genomes: let's get physical! / Nat Rev Gen 2004, 5:578鈥?88. CrossRef
    13. Luo MC, Thomas C, You FM, Hsiao J, Ouyang S, Buell CR, Malandro M, McGuire PE, Anderson OD, Dvorak J: High-throughput fingerprinting of bacterial artificial chromosomes using the snapshot labeling kit and sizing of restriction fragments by capillary electrophoresis. / Genomics 2003, 82:378鈥?89. CrossRef
    14. Xu Z, Sun S, Covaleda L, Ding K, Zhang A, Wu C, Scheuring C, Zhang HB: Genome physical mapping with large-insert bacterial clones by fingerprint analysis: methodologies, source clone genome coverage, and contig map quality. / Genomics 2004, 84:941鈥?51. CrossRef
    15. Nelson WM, Dvorak J, Luo MC, Messing J, Wing RA, Soderlund C: Efficacy of clone fingerprinting methodologies. / Genomics 2006, 89:160鈥?66. CrossRef
    16. Bowers J, Boursiquot JM, This P, Chu K, Johansson H, Meredith C: Historical genetics: The parentage of Chardonnay, Gamay, and other wine grapes of Northeastern France. / Science 1999, 285:1562鈥?565. CrossRef
    17. Velasco R, Zharkikh A, Troggio M, Cartwright DA, Cestaro A, Pruss D, Pindo M, Fitzgerald LM, Vezzulli S, Reid J, Malacarne G, Iliev D, Coppola G, Wardell B, Micheletti D, Macalma T, Facci M, Mitchell JT, Perazzolli M, Eldredge G, Gatto P, Oyzerski R, Moretto M, Gutin N, Stefanini M, Chen Y, Segala C, Davenport C, Dematt猫 L, Mraz A, Battilana J, Stormo K, Costa F, Tao Q, Si-Ammour A, Harkins T, Lackey A, Perbost C, Taillon B, Stella A, Solovyev V, Fawcett JA, Sterck L, Vandepoele K, Grando SM, Toppo S, Moser C, Lanchbury J, Bogden R, Skolnick M, Sgaramella V, Bhatnagar SK, Fontana P, Gutin A, Peer Y, Salamini F, Viola R: A high quality draft consensus sequence of the genome of a heterozygous grapevine variety. / PLoS ONE 2007,2(12):e1326. CrossRef
    18. Vinson JP, Jaffe DB, O'Neill K, Karlsson EK, Stange-Thomann N, Anderson S, Mesirov JP, Satoh N, Satou Y, Nusbaum C, Birren B, Galagan JE, Lander ES: Assembly of polymorphic genomes: algorithms and application to Ciona savignyi . / Genome Res 2005, 15:1127鈥?135. CrossRef
    19. Bisson LF, Waterhouse AL, Ebeler SE, Walker MA, Lapsley JT: The present and future of the international wine industry. / Nature 2002, 418:696鈥?99. CrossRef
    20. Bergelson J, Kreitman M, Stahl EA, Tian D: Evolutionary dynamics of plant R-genes. / Science 2001, 292:2281鈥?285. CrossRef
    21. Meyers BC, Kozik A, Griego A, Kuang H, Michelmore RW: Genome-wide analysis of NBS-LRR-encoding genes in Arabidopsis . / Plant Cell 2003, 15:809鈥?34. CrossRef
    22. Jones JD, Dangl JL: The plant immune system. / Nature 2006, 444:323鈥?29. CrossRef
    23. Chinchilla D, Bauer Z, Regenass M, Boller T, Felix G: The Arabidopsis receptor kinase FLS2 binds flg22 and determines the specificity of flagellin perception. / Plant Cell 2006, 18:465鈥?76. CrossRef
    24. Zipfel C, Kunze G, Chinchilla D, Caniard A, Jones JD, Boller T, Felix G: Perception of the bacterial PAMP EF-Tu by the receptor EFR restricts Agrobacterium -mediated transformation. / Cell 2006, 125:749鈥?60. CrossRef
    25. McHale L, Tan X, Koehl P, Michelmore RW: Plant NBS-LRR proteins: adaptable guards. / Genome Biology 2006, 7:212. CrossRef
    26. Austin MJ, Muskett P, Kahn K, Feys BJ, Jones JD, Parker JE: Regulatory role of SGT1 in early R gene-mediated plant defenses. / Science 2002, 295:2077鈥?080. CrossRef
    27. Peart JR, Lu R, Sadanandom A, Malcuit I, Moffett P, Brice DC, Schauser L, Jaggard DA, Xiao S, Coleman MJ, Dow M, Jones JD, Shirasu K, Baulcombe DC: Ubiquitin ligase-associated protein SGT1 is required for host and non-host disease resistance in plants. / Proc Natl Acad Sci USA 2002, 99:10865鈥?0869. CrossRef
    28. Freialdenhoven A, Orme J, Lahaye T, Schulze-Lefert P: Barley Rom1 revelas a potential link between race-specific and non-host resistance responses to powdery mildew fungi. / Mol Plant Microbe Interact 2005, 18:291鈥?99. CrossRef
    29. Mysore KS, Ryu CM: Non-host resistance: how much do we know? / Trends Plant Sci 2004, 9:97鈥?04. CrossRef
    30. Health MC: Non-host resistance and nonspecific plant defenses. / Current Opin Plant Biol 2000, 3:315鈥?19. CrossRef
    31. Kamoun S: Non-host resistance to Phytophthora : novel prospects for a classical problem. / Current Opin Plant Biol 2001, 4:295鈥?00. CrossRef
    32. Holub EB, Cooper A: Matrix, reinvention in plants: how genetics is unveiling secrets of non-host disease resistance. / Trends Plant Sci 2004, 9:211鈥?14. CrossRef
    33. Donald T, Pellerone F, Adam-Blondon A-F, Bouquet A, Thomas M, Dry I: Identification of resistance gene analogs linked to a powdery mildew resistance locus in grapevine. / Theor Appl Genet 2002, 104:610鈥?18. CrossRef
    34. Di Gaspero G, Cipriani G, Adam-Blondon A-F, Testolin R: Linkage maps of grapevine displaying the chromosomal locations of 420 microsatellite markers and 82 markers for R-gene candidates. / Theor Appl Genet 2007, 114:1249鈥?263. CrossRef
    35. Adam-Blondon A-F, Bernole A, Faes G, Lamoureux D, Pateyron S, Grando MS, Caboche M, Velasco R, Chalhoub B: Construction and characterization of BAC libraries from major grapevine cultivars. / Theor Appl Genet 2005, 110:1363鈥?371. CrossRef
    36. Nelson WM, Soderlund C: Software for restriction fragment physical maps. / The handbook of genome mapping: genetic and physical mapping / (Edited by: Meksem K, Kahl G). Hoboken, NJ: Wiley 2005, 285鈥?06. CrossRef
    37. Doligez A, Adam-Blondon A-F, Cipriani G, Di Gaspero G, Laucou V, Merdinoglu D, Meredith CP, Riaz S, Roux C, This P: An integrated SSR map of grapevine based on five mapping populations. / Theor Appl Genet 2006, 113:369鈥?82. CrossRef
    38. Lamoureux D, Bernole A, Le Clainche I, Tual S, Thareau V, Paillard S, Legeai F, Dossat C, Wincker P, Oswald M, Merdinoglu D, Vignault C, Delrot S, Caboche M, Chalhoub B, Adam-Blondon A-F: Anchoring a large set of markers onto a BAC library for the development of a draft physical map of the grapevine genome. / Theor Appl Genet 2006, 113:344鈥?56. CrossRef
    39. Unit茅 de Recherche G茅nomique Info[http://urgi.versailles.inra.fr/cmap]
    40. Pratelli R, Sutter U, Blatt MR: A new catch in the SNARE. / Trends Plant Sci 2004, 9:187鈥?95. CrossRef
    41. Lu M, Tang X, Zhou JM: Arabidopsis NHO1 is required for general resistance against Pseudomonas bacteria. / Plant Cell 2001, 13:437鈥?47. CrossRef
    42. Yun BW, Atkinson HA, Gaborit C, Greenland A, Read ND, Pallas JA, Loaka GJ: Loss of actin cytoskeleton function and EDS1 activity, in combination, severely compromises non-host resistance in Arabidopsis against wheat powdery mildew. / Plant J 2003, 34:768鈥?77. CrossRef
    43. Holt BF, Belkhadir Y, Dangl JL: Antagonistic control of disease resistance protein stability in the plant immune system. / Science 2005, 309:929鈥?32. CrossRef
    44. Istituto Agrario di San Michele all'Adige[http://genomics.research.iasma.it]
    45. Bowers JE, Meredith CP: The parentage of a classic wine grape, Cabernet Sauvignon. / Nat Genet 1997, 16:84鈥?7. CrossRef
    46. Riaz S, Dangl GS, Edwards KJ, Meredith CJ: A microsatellite marker based framework linkage map of Vitis vinifera L. / Theor Appl Genet 2004, 108:864鈥?72. CrossRef
    47. Jung S, Jesudurai C, Staton M, Du Z, Ficklin S, Cho I, Abbott A, Tomkins J, Main D: GDR (Genome Database for Rosaceae): integrated web resources for Rosaceae genomics and genetics research. / BMC Bioinformatics 2004, 5:130. CrossRef
    48. Genome Database for Rosaceae[http://www.bioinfo.wsu.edu/gdr/]
    49. Quiniou SM, Waldbieser GC, Duke MV: A first generation BAC-based physical map of the channel catfish genome. / BMC Genomics 2007, 8:40. CrossRef
    50. Nelson WM, Bharti AK, Butler E, Wei F, Fuks G, Kim H, Wing RA, Messing J, Soderlund C: Whole-genome validation of high-information-content fingerprinting. / Plant Physiology 2005, 139:27鈥?8. CrossRef
    51. Yu J, Ni P, Wong GKS: Comparing the whole-genome shotgun and map-based sequences of the rice genome. / Trends Plant Sci 2006, 11:387鈥?91. CrossRef
    52. Akkurt M, Welter L, Maul E, T枚pfer R, Zyprian E: Development of SCAR markers linked to powdery mildew ( Uncinula necator ) resistance in grapevine ( Vitis vinifera L. and Vitis sp.). / Mol Breed 2006, 19:103鈥?11. CrossRef
    53. Welter LJ, G枚kt眉rk-Baydar N, Akkurt M, Maul E, Eibach R, T枚pfer R, Zyprian EM: Genetic mapping and localization of quantitative trait loci affecting fungal disease resistance and leaf morphology in grapevine ( Vitis vinifera L). / Mol Breed 2007, 20:359鈥?74. CrossRef
    54. Hoffmann S, Di Gaspero G, Kov谩cs L, Howard S, Kiss E, Galb谩cs Z, Testolin R, Kozma P: Resistance to Erysiphe necator in the grapevine 'Kishmish vatkana' is controlled by a single locus through restriction of hyphal growth. / Theor Appl Genet 2008, 116:427鈥?38. CrossRef
    55. International Grape Genome Project[http://www.vitaceae.org]
    56. Centre National des Ressources G茅nomiques V茅g茅tales[http://cnrgv.toulouse.inra.fr/en]
    57. Genoprofiler[http://wheat.pw.usda.gov/PhysicalMapping/tools/genoprofiler/genoprofiler.html]
    58. FingerPrinted Contigs[http://www.agcol.arizona.edu/software/fpc]
    59. Jansen RK, Kaittanis C, Saski C, Lee SB, Tomkins J, Alverson AJ, Daniell H: Phylogenetic analyses of Vitis (Vitaceae) based on complete chloroplast genome sequences: effects of taxon sampling and phylogenetic methods on resolving relationships among rosids. / BMC Evol Biol 2006, 6:32. CrossRef
    60. Morgante M, Hanafey M, Powell W: Microsatellites are preferentially associated with nonrepetitive DNA in plant genomes. / Nature Genet 2002, 30:194鈥?00. CrossRef
  • 作者单位:Marco Moroldo (1)
    Sophie Paillard (1) (2)
    Raffaella Marconi (3)
    Legeai Fabrice (4)
    Aurelie Canaguier (1)
    Corinne Cruaud (5)
    Veronique De Berardinis (5)
    Cecile Guichard (1)
    Veronique Brunaud (1)
    Isabelle Le Clainche (1)
    Simone Scalabrin (6) (7)
    Raffaele Testolin (3) (7)
    Gabriele Di Gaspero (3) (7)
    Michele Morgante (3) (7)
    Anne-Francoise Adam-Blondon (1)

    1. UMR de G茅nomique V茅g茅tale, INRA-CNRS-UEVE, 2, Rue Gaston, Cr茅mieux, CP5708, 91057, Evry Cedex, France
    2. UMR118, INRA-Agrocampus, University of Rennes, Am茅lioration des Plantes et Biotechnologies, V茅g茅tales, F-35650, Le Rheu, France
    3. Dipartimento di Scienze Agrarie e Ambientali, University of Udine, via delle Scienze 208, 33100, Udine, Italy
    4. Unit茅 de Recherche G茅nomique-Info, URGI, Tour Evry 2, 523, Place des Terrasses de l'Agora, 91034, Evry, Cedex, France
    5. Gnoscope, 2, rue Gaston Cr茅mieux, CP5706, 91057, Evry, Cedex, France
    6. Dipartimento di Scienze Matematiche, University of Udine, via delle Scienze 208, 33100, Udine, Italy
    7. Istituto di Genomica Applicata, Parco Scientifico e Tecnologico Luigi Danieli, via Jacopo Linussio 51, 33100, Udine, Italy
文摘
Background Whole-genome physical maps facilitate genome sequencing, sequence assembly, mapping of candidate genes, and the design of targeted genetic markers. An automated protocol was used to construct a Vitis vinifera 'Cabernet Sauvignon' physical map. The quality of the result was addressed with regard to the effect of high heterozygosity on the accuracy of contig assembly. Its usefulness for the genome-wide mapping of genes for disease resistance, which is an important trait for grapevine, was then assessed. Results The physical map included 29,727 BAC clones assembled into 1,770 contigs, spanning 715,684 kbp, and corresponding to 1.5-fold the genome size. Map inflation was due to high heterozygosity, which caused either the separation of allelic BACs in two different contigs, or local mis-assembly in contigs containing BACs from the two haplotypes. Genetic markers anchored 395 contigs or 255,476 kbp to chromosomes. The fully automated assembly and anchorage procedures were validated by BAC-by-BAC blast of the end sequences against the grape genome sequence, unveiling 7.3% of chimerical contigs. The distribution across the physical map of candidate genes for non-host and host resistance, and for defence signalling pathways was then studied. NBS-LRR and RLK genes for host resistance were found in 424 contigs, 133 of them (32%) were assigned to chromosomes, on which they are mostly organised in clusters. Non-host and defence signalling genes were found in 99 contigs dispersed without a discernable pattern across the genome. Conclusion Despite some limitations that interfere with the correct assembly of heterozygous clones into contigs, the 'Cabernet Sauvignon' physical map is a useful and reliable intermediary step between a genetic map and the genome sequence. This tool was successfully exploited for a quick mapping of complex families of genes, and it strengthened previous clues of co-localisation of major NBS-LRR clusters and disease resistance loci in grapevine.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700