de Sitter Tachyons and Related Topics
详细信息    查看全文
  • 作者:Henri Epstein ; Ugo Moschella
  • 刊名:Communications in Mathematical Physics
  • 出版年:2015
  • 出版时间:May 2015
  • 年:2015
  • 卷:336
  • 期:1
  • 页码:381-430
  • 全文大小:614 KB
  • 参考文献:1.Bros, J., Epstein, H., Moschella, U.: Scalar tachyons in the de Sitter universe. Lett. Math. Phys. 93, 203 (2010). arXiv:-003.-396 [hep-th]
    2.B?rner G., Dürr H.P.: Classical and quantum fields in de Sitter space. Il Nuovo Cimento A LXIV, 669-14 (1969)View Article
    3.Allen B., Folacci A.: The massless minimally coupled scalar field in de Sitter space. Phys. Rev. D 35, 3771 (1987)View Article ADS MathSciNet
    4.Vilenkin A., Ford L.H.: Gravitational effects upon cosmological phase transition. Phys. Rev. D 26, 1231 (1982)View Article ADS MathSciNet
    5.Starobinsky A.A.: Dynamics of phase transition in the new inflationary universe scenario and generation of perturbations. Phys. Lett. 117, 175 (1982)View Article
    6.Mazur P., Mottola E.: Spontaneous breaking of de Sitter symmetry by radiative effects. Nucl. Phys. B 278, 694 (1986)View Article ADS MathSciNet
    7.Antoniadis I., Mottola E.: Graviton fluctuations in de Sitter space. J. Math. Phys. 32, 1037 (1991)View Article ADS MATH MathSciNet
    8.Antoniadis I., Mottola E.: 4-D quantum gravity in the conformal sector. Phys. Rev. D 45, 2013 (1992)View Article ADS MathSciNet
    9.Folacci A.: Toy model for the zero mode problem in the conformal sector of de Sitter quantum gravity. Phys. Rev. D 53, 3108 (1996)View Article ADS MathSciNet
    10.Folacci A.: Zero modes, euclideanization and quantization. Phys. Rev. D 46, 2553 (1992)View Article ADS MathSciNet
    11.Higuchi, A., Marolf, D., Morrison, I.A.: de Sitter invariance of the dS graviton vacuum. Class. Quant. Grav. 28, 245012 (2011). arXiv:-107.-712 [hep-th]]
    12.Faizal, M., Higuchi, A.: Physical equivalence between the covariant and physical graviton two-point functions in de Sitter spacetime. Phys. Rev. D 85, 124021 (2012). arXiv:-107.-395 [gr-qc]
    13.Mora P.J., Tsamis N.C., Woodard R.P.: Graviton propagator in a general invariant Gauge on de Sitter. J. Math. Phys. 53, 122502 (2012)View Article ADS MathSciNet
    14.Morrison, I.A.: On cosmic hair and “de Sitter breaking-in linearized quantum gravity. arXiv:-302.-860 [gr-qc]
    15.Miao, S.P., Mora, P.J., Tsamis, N.C., Woodard, R.P.: The perils of analytic continuation. Phys. Rev. D. 89, 104004 (2014). arXiv:-306.-410 [gr-qc]
    16.Miao, S.P., Tsamis, N.C., Woodard, R.P.: De Sitter breaking through infrared divergences. J. Math. Phys. 51, 072503 (2010). arXiv:-002.-037 [gr-qc]
    17.Streater R.F., Wightman A.S.: PCT, spin and statistics and all that. Princeton University Press, Princeton (1964)MATH
    18.Reed M., Simon B.: Methods of Modern Mathematical Physics, vol. 2. Academic Press, New York (1975)
    19.Strocchi, F., Wightman, A.S.: Proof of the charge superselection rule in local relativistic quantum field theory. J. Math. Phys. 15, 2198 (1974) [Erratum ibid., 17, 1930 (1976)]
    20.Strocchi F.: Selected topics on the general properties of quantum field theory. World Sci. Lect. Notes Phys. 51, 1 (1993)View Article
    21.Schroer B.: The quantization of m 2?<?0 field equations. Phys. Rev. D 3, 1764 (1971)View Article ADS
    22.Anderson, P.R., Eaker, W., Habib, S., Molina-Paris, C., Mottola, E.: Attractor states and infrared scaling in de Sitter space. Phys. Rev. D 62, 124019 (2000). arXiv:?gr-qc/-005102
    23.Youssef, A.: Do scale-invariant fluctuations imply the breaking of de Sitter invariance? Phys. Lett. B 718, 1095 (2013). arXiv:-203.-171 [gr-qc]
    24.Feinberg G.: Possibility of faster-than-light particles. Phys. Rev. 159, 5 (1967)View Article
    25.Bros J., Gazeau J.P., Moschella U.: Quantum field theory in the de Sitter universe. Phys. Rev. Lett. 73, 1746 (1994)View Article ADS MATH MathSciNet
    26.Deser, S., Waldron, A.: Partial masslessness of higher spins in (A)dS. Nucl. Phys. B 607, 577 (2001). arXiv:?hep-th/-103198
    27.Deser, S., Waldron, A.: Arbitrary spin representations in de Sitter from dS/CFT with applications to dS supergravity. Nucl. Phys. B 662, 379 (2003). arXiv:?hep-th/-301068
    28.Bros, J., Moschella, U.: Two point functions and quantum fields in de Sitter universe. Rev. Math. Phys. 8, 327 (1996). arXiv:?gr-qc/-511019
    29.Bros, J., Epstein, H., Moschella, U.: Analyticity properties and thermal effects for general quantum field theory on de Sitter space-time. Commun. Math. Phys. 196, 535 (1998). arXiv:?gr-qc/-801099
    30.Faraut J.: Noyaux sphériques sur un hyperbolo?de à une nappe in Lect Notes in Mathematics, vol. 497. Springer, Berlin (1975)
    31.Mol?anov V.F.: Harmonic analysis on a hyperboloid of one sheet. Soviet. Math. Dokl. 7, 1553-556 (1966)
    32.Thirring W.: Quantum field theory in de Sitter space. Acta Phys. Aust. Suppl. IV, 269 (1967)
    33.Nachtmann O.: Dynamische Stabilit?t im de-Sitter-raum. ?sterr. Akad. Wiss. Math.-Naturw. Kl. Abt. II 176, 363-79 (1968)MATH
    34.Chernikov N.A., Tagirov E.A.: Quantum theory of scalar fields in de Sitter space-time. Ann. Poincare. Phys. Theor. A 9, 109 (1968)MATH MathSciNet
    35.Schomblond C., Spindel P.: Conditions d’un
  • 作者单位:Henri Epstein (1)
    Ugo Moschella (1) (2) (3)

    1. Institut des Hautes études Scientifiques, 91440, Bures-sur-Yvette, France
    2. DiSat, Università dell’Insubria, 22100, Como, Italy
    3. INFN, Sez. di Milano, Milan, Italy
  • 刊物类别:Physics and Astronomy
  • 刊物主题:Physics
    Mathematical and Computational Physics
    Quantum Physics
    Quantum Computing, Information and Physics
    Complexity
    Statistical Physics
    Relativity and Cosmology
  • 出版者:Springer Berlin / Heidelberg
  • ISSN:1432-0916
文摘
We present a complete study of a family of tachyonic scalar fields living on the de Sitter universe. We show that for an infinite set of discrete values of the negative squared mass, the fields exhibit a gauge symmetry and there exists for them a fully acceptable local and covariant quantization similar to the Feynman–Gupta–Bleuler quantization of free QED. For general negative squares masses we also construct positive quantization where the de Sitter symmetry is spontaneously broken. We discuss the sense in which the two quantizations may be considered physically inequivalent even when there is a Lorentz invariant subspace in the second one.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700