Scanpath Generated by Cue-Driven Activation and Spatial Strategy: A Comparative Study
详细信息    查看全文
  • 作者:KangWoo Lee ; Yubu Lee
  • 关键词:Comparative study ; Scanpath ; Face search task ; Cue ; driven activation ; Spatial strategy
  • 刊名:Cognitive Computation
  • 出版年:2014
  • 出版时间:September 2014
  • 年:2014
  • 卷:6
  • 期:3
  • 页码:585-594
  • 全文大小:1,377 KB
  • 参考文献:1. Abbott RG, Williams LR. Multiple target tracking with lazy background subtraction and connected components analysis. Mach Vis Appl 2009;20(2):93-01. CrossRef
    2. Berry WD, Golder M, Milton D. Improving tests of theories positing interaction. J Polit 2012;74:653-1. CrossRef
    3. Birmingham E, Bischof WF, Kingstone A. Social attention and real-world scenes: the roles of action, competition and social content. Q J Exp Psychol 2008;61(7):986-8. CrossRef
    4. Borji A, Sihite DN, Itti L. Quantitative analysis of human-model agreement in visual saliency modeling: a comparative study. IEEE Trans Image Process 2013;22(1):55-9. CrossRef
    5. Borji A, Sihite DN, Itti L. What stands out in a scene? A study of human explicit saliency judgment. Vis Res 2013;91(0):62-7. CrossRef
    6. Cutsuridis V. A cognitive model of saliency, attention, and picture scanning. Cognit Comput 2009;1(4):292-9. CrossRef
    7. De Vries JP, Hooge ITC, Verstraten FAJ. Saccades toward the target are planned as sequences rather than as single steps. Psychol Sci 2014;25(1):215-23.
    8. Einh?user W, Spain M, Perona P. Objects predict fixations better than early saliency. J Vis 2008;8(14):1-6. CrossRef
    9. Findlay JM, Brown V. Eye scanning of multi-element displays: I. Scanpath planning. Vis Res 2006;46(1-):179-5. CrossRef
    10. Findlay JM, Walker R. A model of saccade generation based on parallel processing and competitive inhibition. Behav Brain Sci 1999;22(4):661-4.
    11. Foulsham T, Underwood G. What can saliency models predict about eye movements? Spatial and sequential aspects of fixations during encoding and recognition. J Vis 2008;8(2):1-7. CrossRef
    12. Gersch TM, Kowler E, Schnitzer BS, Dosher BA. Attention during sequences of saccades along marked and memorized paths. Vis Res 2009;49(10):1256-6. CrossRef
    13. Helsgaun K. An effective implementation of the Lin–Kernighan traveling salesman heuristic. Eur J Oper Res 2000;126:106-0. CrossRef
    14. Henderson JM, Brockmole JR, Castelhano MS, Mack M. Visual saliency does not account for eye movements during visual search in real-world scenes. In: van Gompel R, Fischer M, Murray W, Hill R, editors. Eye movements: a window on mind and brain. Oxford: Elsevier; 2007. p. 537-2. CrossRef
    15. Hou X, Harel J, Koch C. Image signature: highlighting sparse salient regions. IEEE Trans Pattern Anal Mach Intell 2012;34(1):194-01. CrossRef
    16. Itti L, Koch C. A saliency-based search mechanism for overt and covert shifts of visual attention. Vis Res 2000;40:1489-06. CrossRef
    17. Judd T, Durand F, Torralba A. (2012) A benchmark of computational models of saliency to predict human fixations. Tech. rep., MIT.
    18. Kay J, Phillips WA. Activation functions, computational goals, and learning rules for local processors with contextual guidance. Neural Comput 1997;9(4):895-10. CrossRef
    19. Laporte G. The traveling salesman problem: an overview of exact and approximate algorithms. Eur J Oper Res 1992;59(2):231-7. CrossRef
    20. Lee K, Choo H. A common computational process in cueing and conjunction search tasks. Cognive Process 2012;13(1):73-2. CrossRef
    21. Li Z, Qin S, Itti L. Visual attention guided bit allocation in video compression. Image Vis Comput 2011;29(1):1-4. CrossRef
    22. Lin S, Kernighan BW. An effective heuristic algorithm for the traveling-salesman problem. Oper Res 1973;21(2):498-16. CrossRef
    23. Merz P, Freisleben B. Memetic algorithms for the traveling salesman problem. Complex Syst 1997;13:297-45.
    24. Meur O, Baccino T. Methods for comparing scanpaths and saliency maps: strengths and weaknesses. Behav Res Methods 2013;45(1):251-6. CrossRef
    25. Minato T, Asada M. Towards selective attention: generating image features by learning a visuo-motor map. Rob Auton Syst 2003;45:211-1. CrossRef
    26. Mordkoff JT, Halterman R, Chen P. Why does the effect of short-soa exogenous cuing on simple rt depend on the number of display locations? Psychon Bull Rev 2008;15(4):819-4. CrossRef
    27. Omid S. Face detection program (2010). http://www.mathworks.com/matlabcentral/fileexchange/11073.
    28. Over E, Hooge I, Vlaskamp B, Erkelens C. Coarse-to-fine eye movement strategy in visual search. Vis Res 2007;47(17):2272-0. CrossRef
    29. Parkhurst D, Law K, Niebur E. Modeling the role of salience in the allocation of overt visual attention. Vis Res 2002;42(1):107-3. CrossRef
    30. Pomplun M, Reingold EM, Shen J. Area activation: a computational model of saccadic selectivity in visual search. Cogn Sci 2003;27(2):299-12. CrossRef
    31. Pomplun M, Sichelschmidt L, Wagner K, Clermont T, Rickheit G, Ritter H. Comparative visual search: a difference that makes a difference. Cogn Sci 2001;25(1):3-6. CrossRef
    32. Rebhan S, Eggert J. Dynamic, task-related and demand-driven scene representation. Cogn Comput 2011;3(1):124-5. CrossRef
    33. der Stigchel SV, Nijboer T. How global is the global effect? The spatial characteristics of saccade averaging. Vis Res 2013;84(0):6-5. CrossRef
    34. Stirk JA, Underwood G. Low-level visual saliency does not predict change detection in natural scenes. J Vis 2007;7(10):1-0. CrossRef
    35. Tatler BW. The central fixation bias in scene viewing: selecting an optimal viewing position independently of motor biases and image feature distributions. J Vis 2007;7(14):1-7. CrossRef
    36. Tatler BW, Baddeley RJ, Vincent BT. The long and the short of it: spatial statistics at fixation vary with saccade amplitude and task. Vis Res 2006;46(12):1857-2. CrossRef
    37. Tatler BW, Hayhoe MM, Land MF, Ballard DH. Eye guidance in natural vision: reinterpreting salience. J Vis 2011;11(5):1-3. CrossRef
    38. Trukenbrod HA, Engbert R. Eye movements in a sequential scanning task: evidence for distributed processing. J Vis 2012;12(1):1-2. CrossRef
    39. Tsai Th, Gill J. Interactions in generalized linear models: theoretical issues and an application to personal vote-earning attributes. Soc Sci 2013;2(2):91-13. CrossRef
    40. Turk M, Pentland A. Eigenfaces for recognition. J Cogn Neurosci 1991;3(1):71-6. CrossRef
    41. Underwood G, Mennie N, Humphrey K, Underwood J. Remembering pictures of real-world images using eye fixation sequences in imagery and in recognition. In: Caputo B, Vincze M, editors. Cognitive vision. Berlin:Springer; 2008.p. 51-4.
    42. Vezhnevets V, Sazonov V, Andreeva A. A survey on pixel-based skin color detection techniques. In: IN PROC. GRAPHICON-2003, 2003;85-2.
    43. Walther D, Rutishauser U, Koch C, Perona P. Selective visual attention enables learning and recognition of multiple objects in cluttered scenes. Comput Vis Image Underst 2005;100(1-):41-3. CrossRef
    44. Wasserman G, Bolbecker A, Li J, Lim-Kessler C. A top down and bottom up component of visual attention. Cogn Comput 2011;3(1):294-02. CrossRef
    45. Watson MR, Brennan AA, Kingstone A, Enns JT. Looking versus seeing: strategies alter eye movements during visual search. Psychon Bull Rev 2010;17(4):543-9. CrossRef
    46. Zabinsky Z. Random search algorithms. Tech. rep., University of Washington, Department of Industrial and Systems Engineering, Seattle, WA 2000.
  • 作者单位:KangWoo Lee (1)
    Yubu Lee (2)

    1. Convergence Research Center, Sungkyunkwan University, 300, Chunchun-dong, Jangan-gu, Suwon, 440-746, Gyeonggi-do, Korea
    2. Center for Neuroscience Imaging Research, Institute for Basic Science, Sungkyunkwan University, 300, Chunchun-dong, Jangan-gu, Suwon, 440-746, Gyeonggi-do, Korea
  • ISSN:1866-9964
文摘
A comparative study of a cued face search task is presented in this paper. Human participants and a computer model carried out a task in which they were required to locate a color-cued target face. Human-generated eye fixations and scanpaths were compared with those generated by the computational model. Throughout the comparison, we considered the similarities and dissimilarities between the two systems-performances. Their results show that the eye fixations in a valid cue search are highly correlated with the computer-generated fixation points in a valid cue search but not to those in random and invalid cue searches. Moreover, the comparison between human- and computer-generated scanpaths showed that the scanpath that links the fixation points is not randomly generated. Our results imply that eye movement is accomplished not only by cue-driven activation, but also by a spatial strategy.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700