Current Control in Soft-Wall Electron Billiards: Energy-Persistent Scattering in the Deep Quantum Regime
详细信息    查看全文
  • 刊名:Lecture Notes in Physics
  • 出版年:2017
  • 出版时间:2017
  • 年:2017
  • 卷:927
  • 期:1
  • 页码:173-191
  • 全文大小:1,874 KB
  • 参考文献:1.C. Morfonios, P. Schmelcher, Current control by resonance decoupling and magnetic focusing in soft-wall billiards. Phys. Rev. Lett. 113 (8), 086802 (2014)
    2.U. Fano, Effects of configuration interaction on intensities and phase shifts. Phys. Rev. 124 (6), 1866 (1961)
    3.A.E. Miroshnichenko, S. Flach, Y.S. Kivshar, Fano resonances in nanoscale structures. Rev. Mod. Phys. 82 (3), 2257 (2010)
    4.E.R. Racec, U. Wulf, P.N. Racec, Fano regime of transport through open quantum dots. Phys. Rev. B 82 (8), 085313 (2010)
    5.B. Weingartner, S. Rotter, J. Burgdörfer, Simulation of electron transport through a quantum dot with soft walls. Phys. Rev. B 72 (11), 115342 (2005)
    6.V.I. Borisov, V.G. Lapin, V.E. Sizov, A.G. Temiryazev, Transistor structures with controlled potential profile in one-dimensional quantum channel. Tech. Phys. Lett. 37 (2), 136 (2011)
    7.T. Heinzel, R. Held, S. Lüscher, K. Ensslin, W. Wegscheider, M. Bichler, Electronic properties of nanostructures defined in Ga[Al]As heterostructures by local oxidation. Phys. E 9 (1), 84 (2001)
    8.A. Fuhrer, S. Lüscher, T. Heinzel, K. Ensslin, W. Wegscheider, M. Bichler, Transport properties of quantum dots with steep walls. Phys. Rev. B 63 (12), 125309 (2001)
    9.C.W.J. Beenakker, H. van Houten, Quantum transport in semiconductor nanostructures. Solid State Phys. 44, 1 (1991)
    10.S. Datta, Electronic Transport in Mesoscopic Systems (Cambridge University Press, Cambridge, 1995)CrossRef
    11.H.U. Baranger, D.P. DiVincenzo, R.A. Jalabert, A.D. Stone, Classical and quantum ballistic-transport anomalies in microjunctions. Phys. Rev. B 44 (19), 10637 (1991)
    12.I.V. Zozoulenko, F.A. Maaø, E.H. Hauge, Coherent magnetotransport in confined arrays of antidots. I. Dispersion relations and current densities. Phys. Rev. B 53 (12), 7975 (1996)
    13.S. Rotter, B. Weingartner, N. Rohringer, J. Burgdörfer, Ballistic quantum transport at high energies and high magnetic fields. Phys. Rev. B 68 (16), 165302 (2003)
    14.C.G. Darwin, The diamagnetism of the free electron. Proc. Camb. Philos. Soc. 27 (01), 86 (1931)
    15.V. Fock, Bemerkung zur Quantelung des harmonischen Oszillators im Magnetfeld. Z. Phys. 47 (5–6), 446 (1928)
    16.L. Reichl, The Transition to Chaos: Conservative Classical Systems and Quantum Manifestations (Springer, Berlin, 2004)CrossRef MATH
    17.H. Stöckmann, Quantum Chaos: An Introduction (Cambridge University Press, Cambridge, 1999)CrossRef MATH
    18.D. Buchholz, P.S. Drouvelis, P. Schmelcher, Single electron quantum dot in a spatially periodic magnetic field. Phys. Rev. B 73 (23), 235346 (2006)
    19.C.S. Lent, Edge states in a circular quantum dot. Phys. Rev. B 43 (5), 4179 (1991)
    20.U. Sivan, Y. Imry, C. Hartzstein, Aharonov-Bohm and quantum hall effects in singly connected quantum dots. Phys. Rev. B 39 (2), 1242 (1989)
    21.D.K. Ferry, A.M. Burke, R. Akis, R. Brunner, T.E. Day, R. Meisels, F. Kuchar, J.P. Bird, B.R. Bennett, Open quantum dots—probing the quantum to classical transition. Semicond. Sci. Technol. 26 (4), 043001 (2011)
    22.C. Payette, D. Austing, G. Yu, J. Gupta, S. Nair, B. Partoens, S. Amaha, S. Tarucha, Two-level anti-crossings high up in the single-particle energy spectrum of a quantum dot. Phys. E 40 (6), 1807 (2008)
    23.C. Payette, G. Yu, J.A. Gupta, D.G. Austing, S.V. Nair, B. Partoens, S. Amaha, S. Tarucha, Coherent three-level mixing in an electronic quantum dot. Phys. Rev. Lett. 102 (2), 026808 (2009)
    24.L.W. Molenkamp, A.A.M. Staring, C.W.J. Beenakker, R. Eppenga, C.E. Timmering, J.G. Williamson, C.J.P.M. Harmans, C.T. Foxon, Electron-beam collimation with a quantum point contact. Phys. Rev. B 41 (2), 1274 (1990)
    25.R. Brunner, R. Meisels, F. Kuchar, R. Akis, D.K. Ferry, J.P. Bird, Draining of the sea of chaos: role of resonant transmission and reflection in an array of billiards. Phys. Rev. Lett. 98 (20), 204101 (2007)
    26.N. Aoki, R. Brunner, A.M. Burke, R. Akis, R. Meisels, D.K. Ferry, Y. Ochiai, Direct imaging of electron states in open quantum dots. Phys. Rev. Lett. 108 (13), 136804 (2012)
    27.J. Repp, G. Meyer, K. Rieder, Snell’s law for surface electrons: refraction of an electron gas imaged in real space. Phys. Rev. Lett. 92 (3), 036803 (2004)
    28.R. Brunner, D.K. Ferry, R. Akis, R. Meisels, F. Kuchar, A.M. Burke, J.P. Bird, Open quantum dots: II. Probing the classical to quantum transition. J. Phys. Condens. Matter 24 (34), 343202 (2012)
    29.D. Ferry, S.M. Goodnick, Transport in Nanostructures (Cambridge University Press, Cambridge, 1997)CrossRef
    30.F.J. Betancur, I.D. Mikhailov, L.E. Oliveira, Shallow donor states in GaAs-(Ga, Al)As quantum dots with different potential shapes. J. Phys. D Appl. Phys. 31 (23), 3391 (1998)
    31.A.M. See, I. Pilgrim, B.C. Scannell, R.D. Montgomery, O. Klochan, A.M. Burke, M. Aagesen, P.E. Lindelof, I. Farrer, D.A. Ritchie, R.P. Taylor, A.R. Hamilton, A.P. Micolich, Impact of small-angle scattering on ballistic transport in quantum dots. Phys. Rev. Lett. 108 (19), 196807 (2012)
    32.A. Bärnthaler, S. Rotter, F. Libisch, J. Burgdörfer, S. Gehler, U. Kuhl, H. Stöckmann, Probing decoherence through fano resonances. Phys. Rev. Lett. 105 (5), 056801 (2010)
  • 作者单位:Christian V. Morfonios (18)
    Peter Schmelcher (18)

    18. Center for Optical Quantum Technologies, University of Hamburg, Hamburg, Germany
  • 丛书名:Control of Magnetotransport in Quantum Billiards
  • ISBN:978-3-319-39833-4
  • 刊物类别:Physics and Astronomy
  • 刊物主题:Physics
    Mathematical Methods in Physics
    Mathematical and Computational Physics
    Astronomy, Astrophysics and Cosmology
    Atoms, Molecules, Clusters and Plasmas
    Relativity and Cosmology
    Extraterrestrial Physics and Space Sciences
    Condensed Matter
  • 出版者:Springer Berlin / Heidelberg
  • ISSN:1616-6361
  • 卷排序:927
文摘
In this chapter we use ‘soft-wall’ boundary confinement, that is, a potential profile with finite slope, to induce charge current controllability in a two-terminal transport setup. In particular, the isolation of energetically persistent scattering pathways from the resonant manifold of an elongated electron billiard in the deep quantum regime is demonstrated. This in turn enables efficient conductance switching at varying temperature and Fermi velocity , using a weak magnetic field. The effect relies on the interplay between the elongated soft-wall confinement and magnetic focusing , which together rescale the scattering pathways and decouple quasi-bound states from the attached leads. The mechanism proves robust against billiard shape variations and qualifies as a nanoelectronic current control element. Excerpts and figures from Morfonios and Schmelcher (Phys. Rev. Lett. 113(8):086802, 2014) reprinted with permission. Copyright (2014) by the American Physical Society.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700