Trimethylamine-N-Oxide Treatment Induces Changes in the ATP-Binding Cassette Transporter A1 and Scavenger Receptor A1 in Murine Macrophage J774A.1 cells
详细信息    查看全文
  • 作者:Abbas Mohammadi ; Ahmad Gholamhoseynian Najar ; Mohammad Mehdi Yaghoobi…
  • 关键词:ATP ; binding cassette transporter 1 ; scavenger receptor class a ; tunicamycin ; endoplasmic reticulum stress ; macrophage
  • 刊名:Inflammation
  • 出版年:2016
  • 出版时间:February 2016
  • 年:2016
  • 卷:39
  • 期:1
  • 页码:393-404
  • 全文大小:1,766 KB
  • 参考文献:1.Wang, Z., E. Klipfell, B.J. Bennett, R. Koeth, B.S. Levison, B. Dugar, A.E. Feldstein, E.B. Britt, X. Fu, Y.M. Chung, et al. 2011. Gut flora metabolism of phosphatidylcholine promotes cardiovascular disease. Nature 472: 57–63.PubMedCentral CrossRef PubMed
    2.Koeth, R.A., Z. Wang, B.S. Levison, J.A. Buffa, E. Org, B.T. Sheehy, E.B. Britt, X. Fu, Y. Wu, L. Li, et al. 2013. Intestinal microbiota metabolism of L-carnitine, a nutrient in red meat, promotes atherosclerosis. Nat Med 19: 576–585.PubMedCentral CrossRef PubMed
    3.Hatori, K., T. Iwasaki, and R. Wada. 2014. Effect of urea and trimethylamine N-oxide on the binding between actin molecules. Biophys Chem 193–194: 20–26.CrossRef PubMed
    4.Canchi, D.R., P. Jayasimha, D.C. Rau, G.I. Makhatadze, and A.E. Garcia. 2012. Molecular mechanism for the preferential exclusion of TMAO from protein surfaces. J Phys Chem B 116: 12095–12104.PubMedCentral CrossRef PubMed
    5.Yancey, P.H., M.E. Clark, S.C. Hand, R.D. Bowlus, and G.N. Somero. 1982. Living with water stress: evolution of osmolyte systems. Science 217: 1214–1222.CrossRef PubMed
    6.Lenky, C.C., C.J. McEntyre, and M. Lever. 2012. Measurement of marine osmolytes in mammalian serum by liquid chromatography-tandem mass spectrometry. Anal Biochem 420: 7–12.CrossRef PubMed
    7.Treberg, J.R., C.E. Wilson, R.C. Richards, K.V. Ewart, and W.R. Driedzic. 2002. The freeze-avoidance response of smelt Osmerus mordax: initiation and subsequent suppression of glycerol, trimethylamine oxide and urea accumulation. J Exp Biol 205: 1419–1427.PubMed
    8.Cho, S.S., G. Reddy, J.E. Straub, and D. Thirumalai. 2011. Entropic stabilization of proteins by TMAO. J Phys Chem B 115: 13401–13407.CrossRef PubMed
    9.Hunger, J., K.J. Tielrooij, R. Buchner, M. Bonn, and H.J. Bakker. 2012. Complex formation in aqueous trimethylamine-N-oxide (TMAO) solutions. J Phys Chem B 116: 4783–4795.CrossRef PubMed
    10.Lin, T.Y., and S.N. Timasheff. 1994. Why do some organisms use a urea-methylamine mixture as osmolyte? Thermodynamic compensation of urea and trimethylamine N-oxide interactions with protein. Biochemistry 33: 12695–12701.CrossRef PubMed
    11.Serkova, N., T.F. Fuller, J. Klawitter, C.E. Freise, and C.U. Niemann. 2005. H-NMR-based metabolic signatures of mild and severe ischemia/reperfusion injury in rat kidney transplants. Kidney Int 67: 1142–1151.CrossRef PubMed
    12.Bain, M.A., R. Faull, G. Fornasini, R.W. Milne, and A.M. Evans. 2006. Accumulation of trimethylamine and trimethylamine-N-oxide in end-stage renal disease patients undergoing haemodialysis. Nephrol Dial Transplant 21: 1300–1304.CrossRef PubMed
    13.Fujiwara, M., K. Arifuku, I. Ando, and T. Nemoto. 2005. Pattern recognition analysis for classification of hypertensive model rats and diurnal variation using 1H-NMR spectroscopy of urine. Anal Sci 21: 1259–1262.CrossRef PubMed
    14.Strom, A.R., J.A. Olafsen, and H. Larsen. 1979. Trimethylamine oxide: a terminal electron acceptor in anaerobic respiration of bacteria. J Gen Microbiol 112: 315–320.CrossRef PubMed
    15.Murphy, J.E., P.R. Tedbury, S. Homer-Vanniasinkam, J.H. Walker, and S. Ponnambalam. 2005. Biochemistry and cell biology of mammalian scavenger receptors. Atherosclerosis 182: 1–15.CrossRef PubMed
    16.Plüddemann, A., C. Neyen, and S. Gordon. 2007. Macrophage scavenger receptors and host-derived ligands. Methods 43: 207–217.CrossRef PubMed
    17.Tang, C., and J.F. Oram. 1791. The cell cholesterol exporter ABCA1 as a protector from cardiovascular disease and diabetes. Biochim Biophys Acta 2009: 563–572.
    18.Tall, A.R., P. Costet, and N. Wang. 2002. Regulation and mechanisms of macrophage cholesterol efflux. J Clin Invest 110: 899–904.PubMedCentral CrossRef PubMed
    19.Wellington, C.L., E.K. Walker, A. Suarez, A. Kwok, N. Bissada, R. Singaraja, Y.Z. Yang, L.H. Zhang, E. James, J.E. Wilson, et al. 2002. ABCA1 mRNA and protein distribution patterns predict multiple different roles and levels of regulation. Lab Invest 82: 273–283.CrossRef PubMed
    20.Loscalzo, J. 2011. Lipid metabolism by gut microbes and atherosclerosis. Circ Res 109: 127–129.CrossRef PubMed
    21.Ruijter, J.M., C. Ramakers, W.M. Hoogaars, Y. Karlen, O. Bakker, M.J. van den Hoff, and A.F. Moorman. 2009. Amplification efficiency: linking baseline and bias in the analysis of quantitative PCR data. Nucleic Acids Res 37, e45.PubMedCentral CrossRef PubMed
    22.Street, T.O., K.A. Krukenberg, J. Rosgen, D.W. Bolen, and D.A. Agard. 2010. Osmolyte-induced conformational changes in the Hsp90 molecular chaperone. Protein Sci 19: 57–65.PubMedCentral PubMed
    23.Gong, B., L.Y. Zhang, C.P. Pang, D.S. Lam, and G.H. Yam. 2009. Trimethylamine N-oxide alleviates the severe aggregation and ER stress caused by G98R alphaA-crystallin. Mol Vis 15: 2829–2840.PubMedCentral PubMed
    24.Bennett, B.J., T.Q. de Aguiar Vallim, Z. Wang, D.M. Shih, Y. Meng, J. Gregory, H. Allayee, R. Lee, M. Graham, R. Crooke, et al. 2013. Trimethylamine-N-oxide, a metabolite associated with atherosclerosis, exhibits complex genetic and dietary regulation. Cell Metab 17: 49–60.PubMedCentral CrossRef PubMed
    25.Brown, J.M., and S.L. Hazen. 2014. Metaorganismal nutrient metabolism as a basis of cardiovascular disease. Curr Opin Lipidol 25: 48–53.PubMedCentral CrossRef PubMed
    26.Macdonald, R.D., and M. Khajehpour. 2013. Effects of the osmolyte TMAO (Trimethylamine-N-oxide) on aqueous hydrophobic contact-pair interactions. Biophys Chem 184: 101–107.CrossRef PubMed
    27.Suzuki, S., A. Kubo, H. Shinano, and K. Takama. 1992. Inhibition of the electron transport system in Staphylococcus aureus by trimethylamine-N-oxide. Microbios 71: 145–148.PubMed
    28.Malhotra, J.D., and R.J. Kaufman. 2007. The endoplasmic reticulum and the unfolded protein response. Semin Cell Dev Biol 18: 716–731.PubMedCentral CrossRef PubMed
    29.Schroder, M., and R.J. Kaufman. 2005. ER stress and the unfolded protein response. Mutat Res 569: 29–63.CrossRef PubMed
    30.Shen, X., K. Zhang, and R.J. Kaufman. 2004. The unfolded protein response--a stress signaling pathway of the endoplasmic reticulum. J Chem Neuroanat 28: 79–92.CrossRef PubMed
    31.Kennedy, D., A. Samali, and R. Jager. 2015. Methods for Studying ER Stress and UPR Markers in Human Cells. Methods Mol Biol 1292: 3–18.CrossRef PubMed
    32.Samali, A., U. Fitzgerald, S. Deegan, and S. Gupta. 2010. Methods for monitoring endoplasmic reticulum stress and the unfolded protein response. Int J Cell Biol 2010: 830307.PubMedCentral PubMed
    33.Wiley, J.C., J.S. Meabon, H. Frankowski, E.A. Smith, L.C. Schecterson, M. Bothwell, and W.C. Ladiges. 2010. Phenylbutyric acid rescues endoplasmic reticulum stress-induced suppression of APP proteolysis and prevents apoptosis in neuronal cells. PLoS One 5, e9135.PubMedCentral CrossRef PubMed
    34.Castilho, G., L.S. Okuda, R.S. Pinto, R.T. Iborra, E.R. Nakandakare, C.X. Santos, F.R. Laurindo, and M. Passarelli. 2012. ER stress is associated with reduced ABCA-1 protein levels in macrophages treated with advanced glycated albumin - reversal by a chemical chaperone. Int J Biochem Cell Biol 44: 1078–1086.CrossRef PubMed
    35.de Souza, Pinto R., G. Castilho, B.A. Paim, A. Machado-Lima, N.M. Inada, E.R. Nakandakare, A.E. Vercesi, and M. Passarelli. 2012. Inhibition of macrophage oxidative stress prevents the reduction of ABCA-1 transporter induced by advanced glycated albumin. Lipids 47: 443–450.CrossRef
    36.Zani, I.A., S.L. Stephen, N.A. Mughal, D. Russell, S. Homer-Vanniasinkam, S.B. Wheatcroft, and S. Ponnambalam. 2015. Scavenger receptor structure and function in health and disease. Cells 4: 178–201.PubMedCentral CrossRef PubMed
    37.Kzhyshkowska, J., C. Neyen, and S. Gordon. 2012. Role of macrophage scavenger receptors in atherosclerosis. Immunobiology 217: 492–502.CrossRef PubMed
    38.Yao, S., C. Miao, H. Tian, H. Sang, N. Yang, P. Jiao, J. Han, C. Zong, and S. Qin. 2014. Endoplasmic reticulum stress promotes macrophage-derived foam cell formation by up-regulating cluster of differentiation 36 (CD36) expression. J Biol Chem 289: 4032–4042.PubMedCentral CrossRef PubMed
    39.Yao, S.T., L. Zhao, C. Miao, H. Tian, N.N. Yang, S.D. Guo, L. Zhai, J. Chen, Y.W. Wang, and S.C. Qin. 2014. [Endoplasmic reticulum stress mediates oxidized low density lipoprotein-induced scavenger receptor A1 upregulation in macrophages]. Sheng Li Xue Bao 66: 612–618.PubMed
    40.Hotamisligil, G.S. 2010. Endoplasmic reticulum stress and atherosclerosis. Nat Med 16: 396–399.PubMedCentral CrossRef PubMed
    41.Myoishi, M., H. Hao, T. Minamino, K. Watanabe, K. Nishihira, K. Hatakeyama, Y. Asada, K. Okada, H. Ishibashi-Ueda, G. Gabbiani, et al. 2007. Increased endoplasmic reticulum stress in atherosclerotic plaques associated with acute coronary syndrome. Circulation 116: 1226–1233.CrossRef PubMed
    42.Zhou, J., S. Lhotak, B.A. Hilditch, and R.C. Austin. 2005. Activation of the unfolded protein response occurs at all stages of atherosclerotic lesion development in apolipoprotein E-deficient mice. Circulation 111: 1814–1821.CrossRef PubMed
    43.Feng, B., P.M. Yao, Y. Li, C.M. Devlin, D. Zhang, H.P. Harding, M. Sweeney, J.X. Rong, G. Kuriakose, E.A. Fisher, et al. 2003. The endoplasmic reticulum is the site of cholesterol-induced cytotoxicity in macrophages. Nat Cell Biol 5: 781–792.CrossRef PubMed
    44.Pineau, L., J. Colas, S. Dupont, L. Beney, P. Fleurat-Lessard, J.M. Berjeaud, T. Berges, and T. Ferreira. 2009. Lipid-induced ER stress: synergistic effects of sterols and saturated fatty acids. Traffic 10: 673–690.CrossRef PubMed
  • 作者单位:Abbas Mohammadi (1) (2)
    Ahmad Gholamhoseynian Najar (1)
    Mohammad Mehdi Yaghoobi (3)
    Yunes Jahani (4)
    Zakaria Vahabzadeh (1)

    1. Department of Clinical Biochemistry, Afzalipour School of Medicine, Kerman University of Medical Sciences, Kerman, Iran
    2. Endocrine and Metabolism Research Center, Institute of Basic and Clinical Physiology, Kerman University of Medical Sciences, Kerman, Iran
    3. Research Department of Biotechnology, Institute of Sciences and High Technology and Environmental Sciences, Graduate University of Advanced Technology, Kerman, Iran
    4. Social Determinants of Health Research Center, Institute of Futures Studies in Health, Department of Biostatistics and Epidemiology, School of Public Health, Kerman University of Medical Sciences, Kerman, Iran
  • 刊物类别:Medicine
  • 刊物主题:Medicine & Public Health
    Rheumatology
    Internal Medicine
    Pharmacology and Toxicology
    Pathology
  • 出版者:Springer Netherlands
  • ISSN:1573-2576
文摘
Background: Recently, trimethylamine N-oxide was introduced as a risk factor for atherosclerosis in terms of helping foam cell formation and worsening atherosclerosis complications. The present study was performed to investigate whether/how trimethylamine N-oxide is involved in regulation of ATP-binding cassette transporter A1 and scavenger receptor A1 in macrophages at both mRNA and protein levels. Methods: Murine macrophage J774A.1 cells were treated with micromolar concentrations of trimethylamine N-oxide and 4-phenylbutyric acid, a chemical chaperon, for different time intervals. Tunicamycin was also used as a control for induction of endoplasmic reticulum stress. Results: Similar to tunicamycin, trimethylamine N-oxide increased scavenger receptor A1 in all treatment periods, whereas ATP-binding cassette transporter A1 was only reduced 24 h post-treatment with trimethylamine N-oxide at both mRNA and protein levels. In contrast, 4-phenylbutyric acid failed to induce such changes in either scavenger receptor A1 or ATP-binding cassette transporter A1. Conclusions: The results of this study, in agreement with previous studies, confirm the mechanistic role of trimethylamine N-oxide in the upregulation of scavenger receptor A1, which potentially can promote its proatherogenic role. The results also showed downregulation of ATP-binding cassette transporter A1 in trimethylamine N-oxide treated macrophages which may indicate another possible proatherosclerotic mechanism for foam cell formation. KEY WORDS ATP-binding cassette transporter 1 scavenger receptor class a tunicamycin endoplasmic reticulum stress macrophage

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700