Schematic Cut Elimination and the Ordered Pigeonhole Principle
详细信息    查看全文
  • 刊名:Lecture Notes in Computer Science
  • 出版年:2016
  • 出版时间:2016
  • 年:2016
  • 卷:9706
  • 期:1
  • 页码:241-256
  • 全文大小:271 KB
  • 参考文献:1.Baaz, M., Hetzl, S., Leitsch, A., Richter, C., Spohr, H.: Ceres: An analysis of Fürstenberg’s proof of the infinity of primes. Theoret. Comput. Sci. 403(2–3), 160–175 (2008)MathSciNet CrossRef MATH
    2.Baaz, M., Leitsch, A.: On skolemization and proof complexity. Fundamenta Informaticae 20(4), 353–379 (1994)MathSciNet MATH
    3.Baaz, M., Leitsch, A.: Cut-elimination and redundancy-elimination by resolution. J. Symbolic Comput. 29, 149–176 (2000)MathSciNet CrossRef MATH
    4.Baaz, M., Leitsch, A.: Methods of Cut-Elimination. Springer Publishing Company, Incorporated (2013)
    5.Brotherston, J.: Cyclic proofs for first-order logic with inductive definitions. In: Beckert, B. (ed.) TABLEAUX 2005. LNCS (LNAI), vol. 3702, pp. 78–92. Springer, Heidelberg (2005)CrossRef
    6.Brotherston, J., Simpson, A.: Sequent calculi for induction and infinite descent. J. Logic Comput. 22, 1177–1216 (2010)MathSciNet MATH
    7.Bundy, A.: The automation of proof by mathematical induction. In: Robinson, J.A., Voronkov, A. (eds.) Handbook of Automated Reasoning, pp. 845–911. Elsevier, Amsterdam (2001)CrossRef
    8.Cerna, D., Leitsch, A.: Analysis of clause set schema aided by automated theorem proving: Acase study (2015). arXiv:​1503.​08551v1 [cs.LO]
    9.Cerna, D., Leitsch, A.: Schematic cut elimination and the ordered pigeonhole principle [extended version] (2016). arXiv:​1601.​06548 [math.LO]
    10.Cerna, D.M.: Advances in schematic cut elimination. Ph.D. thesis, Technical University of Vienna (2015). http://​media.​obvsg.​at/​p-AC12246421-2001
    11.Comon, H.: Inductionless induction. In: Robinson, A., Voronkov, A. (eds.) Handbook of Automated Reasoning, pp. 913–962. Elsevier, Amsterdam (2001)CrossRef
    12.Dunchev, C.: Automation of cut-elimination in proof schemata. Ph.D. thesis, Technical University of Vienna (2012)
    13.Dunchev, C., Leitsch, A., Rukhaia, M., Weller, D.: Cut-elimination and proof schemata. In: Aher, M., Hole, D., Jeřábek, E., Kupke, C. (eds.) TbiLLC 2013. LNCS, vol. 8984, pp. 117–136. Springer, Heidelberg (2015)
    14.Gentzen, G.: Untersuchungen über das logische Schließen I. Math. Z. 39(1), 176–210 (1935)MathSciNet CrossRef MATH
    15.Girard, J.-Y.: Proof Theory and Logical Complexity. Studies in Proof Theory, vol. 1. Bibliopolis, Naples (1987)MATH
    16.Mcdowell, R., Miller, D.: Cut-elimination for a logic with definitions and induction. Theoret. Comput. Sci. 232, 2000 (1997)MathSciNet
    17.Takeuti, G.: Proof Theory. Studies in Logic and the Foundations of Mathematics, vol. 81. American Elsevier Pub., New York (1975)MATH
    18.Weidenbach, C., Dimova, D., Fietzke, A., Kumar, R., Suda, M., Wischnewski, P.: SPASS version 3.5. In: Schmidt, R.A. (ed.) CADE-22. LNCS, vol. 5663, pp. 140–145. Springer, Heidelberg (2009)CrossRef
  • 作者单位:David M. Cerna (15)
    Alexander Leitsch (16)

    15. Research Institute for Symbolic Computation (RISC), Johannes Kepler University, Linz, Austria
    16. Logic and Theory Group, Technical University of Vienna, Vienna, Austria
  • 丛书名:Automated Reasoning
  • ISBN:978-3-319-40229-1
  • 刊物类别:Computer Science
  • 刊物主题:Artificial Intelligence and Robotics
    Computer Communication Networks
    Software Engineering
    Data Encryption
    Database Management
    Computation by Abstract Devices
    Algorithm Analysis and Problem Complexity
  • 出版者:Springer Berlin / Heidelberg
  • ISSN:1611-3349
  • 卷排序:9706
文摘
Schematic cut-elimination is a method of cut-elimination which can handle certain types of inductive proofs. In previous work, an attempt was made to apply the schematic CERES method to a formal proof with an arbitrary number of \(\varPi _{2}\) cuts (a recursive proof encapsulating the infinitary pigeonhole principle). However the derived schematic refutation for the characteristic clause set of the proof could not be expressed in the schematic resolution calculus developed so far. Without this formalization a Herbrand system cannot be algorithmically extracted. In this work, we provide a restriction of infinitary pigeonhole principle, the ECA-schema (Eventually Constant Assertion), or ordered infinitary pigeonhole principle, whose analysis can be completely carried out in the existing framework of schematic CERES. This is the first time the framework is used for proof analysis. From the refutation of the clause set and a substitution schema we construct a Herbrand system.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700