Molecular imaging of inflammation and intraplaque vasa vasorum: A step forward to identification of vulnerable plaques?
详细信息    查看全文
  • 作者:Gerrit L. ten Kate MD (1) (2)
    Eric J. G. Sijbrands MD
    ; PhD (1)
    Roelf Valkema MD
    ; PhD (3)
    Folkert J. ten Cate MD
    ; PhD (2)
    Steven B. Feinstein MD (4)
    Antonius F. W. van der Steen PhD (5)
    Mat J. A. P. Daemen MD
    ; PhD (6)
    Arend F. L. Schinkel MD
    ; PhD (1) (2)
  • 关键词:Atherosclerosis ; angiogenesis ; inflammation ; molecular imaging ; vasa vasorum ; vulnerable atherosclerotic plaque
  • 刊名:Journal of Nuclear Cardiology
  • 出版年:2010
  • 出版时间:October 2010
  • 年:2010
  • 卷:17
  • 期:5
  • 页码:897-912
  • 全文大小:1048KB
  • 参考文献:1. Weissleder R, Pittet MJ. Imaging in the era of molecular oncology. Nature 2008;452:580-9. f="http://dx.doi.org/10.1038/nature06917">CrossRef
    2. Sanz J, Fayad ZA. Imaging of atherosclerotic cardiovascular disease. Nature 2008;451:953-7. f="http://dx.doi.org/10.1038/nature06803">CrossRef
    3. Kastelein JJP, de Groot E. Ultrasound imaging techniques for the evaluation of cardiovascular therapies. Eur Heart J 2008;29:849-58. f="http://dx.doi.org/10.1093/eurheartj/ehn070">CrossRef
    4. Naghavi M, Libby P, Falk E, Casscells SW, Litovsky S, Rumberger J, et al. From vulnerable plaque to vulnerable patient: A call for new definitions and risk assessment strategies: Part I. Circulation 2003;108:1664-72. f="http://dx.doi.org/10.1161/01.CIR.0000087480.94275.97">CrossRef
    5. Barger AC, Beeuwkes R, Lainey LL, Silverman KJ. Hypothesis: Vasa vasorum and neovascularization of human coronary arteries. A possible role in the pathophysiology of atherosclerosis. N Engl J Med 1984;310:175-7. f="http://dx.doi.org/10.1056/NEJM198401193100307">CrossRef
    6. Moreno PR, Purushothaman KR, Zias E, Sanz J, Fuster V. Neovascularization in human atherosclerosis. Curr Mol Med 2006;6:457-77. f="http://dx.doi.org/10.2174/156652406778018635">CrossRef
    7. Langheinrich AC, Kampschulte M, Buch T, Bohle RM. Vasa vasorum and atherosclerosis鈥擰uid novi? Thromb Haemost 2007;97:873-9.
    8. O鈥橞rien ER, Garvin MR, Dev R, Stewart DK, Hinohara T, Simpson JB, et al. Angiogenesis in human coronary atherosclerotic plaques. Am J Pathol 1994;145:883-94.
    9. Jeziorska M, Woolley DE. Neovascularization in early atherosclerotic lesions of human carotid arteries: Its potential contribution to plaque development. Hum Pathol 1999;30:919-25. f="http://dx.doi.org/10.1016/S0046-8177(99)90245-9">CrossRef
    10. Moulton KS. Angiogenesis in atherosclerosis: Gathering evidence beyond speculation. Curr Opin Lipidol 2006;17:548-55. f="http://dx.doi.org/10.1097/01.mol.0000245261.71129.f0">CrossRef
    11. G枚ssl M, Versari D, Lerman LO, Chade AR, Beighley PE, Erbel R, et al. Low vasa vasorum densities correlate with inflammation and subintimal thickening: Potential role in location鈥擠etermination of atherogenesis. Atherosclerosis 2009;206:362-8. f="http://dx.doi.org/10.1016/j.atherosclerosis.2009.03.010">CrossRef
    12. Mulligan-Kehoe MJ. The vasa vasorum in diseased and nondiseased arteries. Am J Physiol Heart Circ Physiol 2010;298:H295-305. f="http://dx.doi.org/10.1152/ajpheart.00884.2009">CrossRef
    13. Purushothaman KR, Fuster V, O鈥機onnor WN, Moreno PR. Neovascularization is the most powerful independent predictor for progression to disruption in high-risk atherosclerotic plaques (abstract). J Am Coll Cardiol 2003;41:352-3. f="http://dx.doi.org/10.1016/S0735-1097(03)82095-8">CrossRef
    14. Moreno PR, Purushothaman KR, Fuster V, Echeverri D, Truszczynska H, Sharma SK, et al. Plaque neovascularization is increased in ruptured atherosclerotic lesions of human aorta: Implications for plaque vulnerability. Circulation 2004;110:2032-8. f="http://dx.doi.org/10.1161/01.CIR.0000143233.87854.23">CrossRef
    15. Ross R. Atherosclerosis鈥擜n inflammatory disease. N Engl J Med 1999;340:115-26. f="http://dx.doi.org/10.1056/NEJM199901143400207">CrossRef
    16. Fuster V, Moreno PR, Fayad ZA, Corti R, Badimon JJ. Atherothrombosis and high-risk plaque: Part I: Evolving concepts. J Am Coll Cardiol 2005;46:937-54. f="http://dx.doi.org/10.1016/j.jacc.2005.03.074">CrossRef
    17. Moulton KS, Vakili K, Zurakowski D, Soliman M, Butterfield C, Sylvin E, et al. Inhibition of plaque neovascularization reduces macrophage accumulation and progression of advanced atherosclerosis. Proc Natl Acad Sci USA 2003;100:4736-41. f="http://dx.doi.org/10.1073/pnas.0730843100">CrossRef
    18. O鈥橞rien KD, Allen MD, McDonald TO, Chait A, Harlan JM, Fishbein D, et al. Vascular cell adhesion molecule-1 is expressed in human coronary atherosclerotic plaques. Implications for the mode of progression of advanced coronary atherosclerosis. J Clin Invest 1993;92:945-51. f="http://dx.doi.org/10.1172/JCI116670">CrossRef
    19. Ribatti D, Levi-Schaffer F, Kovanen PT. Inflammatory angiogenesis in atherogenesis鈥擜 double-edged sword. Ann Med 2008;40:606-21. f="http://dx.doi.org/10.1080/07853890802186913">CrossRef
    20. Ritman EL, Lerman A. The dynamic vasa vasorum. Cardiovasc Res 2007;75:649-58. f="http://dx.doi.org/10.1016/j.cardiores.2007.06.020">CrossRef
    21. Heistad DD, Marcus ML, Larsen GE, Armstrong ML. Role of vasa vasorum in nourishment of the aortic wall. Am J Physiol Heart Circ Physiol 1981;240:H781-7.
    22. Williams JK, Armstrong ML, Heistad DD. Blood flow through new microvessels: Factors that affect regrowth of vasa vasorum. Am J Physiol Heart Circ Physiol 1988;254:H126-32.
    23. Stefanadis C, Vlachopoulos C, Karayannacos P, Boudoulas H, Stratos C, Filippides T, et al. Aorta: Structure/function: Effect of vasa vasorum flow on structure and function of the aorta in experimental animals. Circulation 1995;91:2669-78.
    24. Groszek E, Grundy S. The possible role of the arterioal microcirculation in the pathogenisis of atherosclerosis (Editorial). J Chronic Dis 1980;33:679-84. f="http://dx.doi.org/10.1016/0021-9681(80)90054-5">CrossRef
    25. Sluimer JC, Daemen MJ. Novel concepts in atherogenesis: Angiogenesis and hypoxia in atherosclerosis. J Pathol 2009;218:7-29. f="http://dx.doi.org/10.1002/path.2518">CrossRef
    26. G枚ssl M, Versari D, Hildebrandt H, Bajanowski T, Sangiorgi G, Erbel R, et al. Segmental heterogeneity of vasa vasorum neovascularization in human coronary atherosclerosis. JACC Cardiovasc Imaging 2010;3:32-40. f="http://dx.doi.org/10.1016/j.jcmg.2009.10.009">CrossRef
    27. Bjornheden T, Levin M, Evaldsson M, Wiklund O. Evidence of hypoxic areas within the arterial wall in vivo. Arterioscler Thromb Vasc Biol 1999;19:870-6.
    28. Mayr M, Sidibe A, Zampetaki A. The paradox of hypoxic and oxidative stress in atherosclerosis (Editorial). J Am Coll Cardiol 2008;51:1266-7. f="http://dx.doi.org/10.1016/j.jacc.2008.01.005">CrossRef
    29. Sluimer JC, Gasc JM, van Wanroij JL, Kisters N, Groeneweg M, Sollewijn Gelpke MD, et al. Hypoxia, hypoxia-inducible transcription factor, and macrophages in human atherosclerotic plaques are correlated with intraplaque angiogenesis. J Am Coll Cardiol 2008;51:1258-65. f="http://dx.doi.org/10.1016/j.jacc.2007.12.025">CrossRef
    30. O鈥橞rien KD, McDonald TO, Chait A, Allen MD, Alpers CE. Neovascular expression of e-selectin, intercellular adhesion molecule-1, and vascular cell adhesion molecule-1 in human atherosclerosis and their relation to intimal leukocyte content. Circulation 1996;93:672-82.
    31. Dunmore BJ, McCarthy MJ, Naylor AR, Brindle NPJ. Carotid plaque instability and ischemic symptoms are linked to immaturity of microvessels within plaques. J Vasc Surg 2007;45:155-9. f="http://dx.doi.org/10.1016/j.jvs.2006.08.072">CrossRef
    32. Sluimer J, Kolodgie F, Bijnens AP, Maxfield K, Pacheco E, Kutys B, et al. Thin-walled microvessels in human coronary atherosclerotic plaques show incomplete endothelial junctions relevance of compromised structural integrity for intraplaque microvascular leakage. J Am Coll Cardiol 2009;53:1517-27. f="http://dx.doi.org/10.1016/j.jacc.2008.12.056">CrossRef
    33. Biedermann BC, Coll B, Adam D, Feinstein SB. Arterial microvessels: An early or late sign of atherosclerosis? (Letter). J Am Coll Cardiol 2008;52:968-9. f="http://dx.doi.org/10.1016/j.jacc.2008.04.064">CrossRef
    34. Fleiner M, Kummer M, Mirlacher M, Sauter G, Cathomas G, Krapf R, et al. Arterial neovascularization and inflammation in vulnerable patients: Early and late signs of symptomatic atherosclerosis. Circulation 2004;110:2843-50. f="http://dx.doi.org/10.1161/01.CIR.0000146787.16297.E8">CrossRef
    35. Kwon HM, Sangiorgi G, Ritman EL, McKenna C, Holmes DR, Schwartz RS, et al. Enhanced coronary vasa vasorum neovascularization in experimental hypercholesterolemia. J Clin Invest 1998;101:1551-6. f="http://dx.doi.org/10.1172/JCI1568">CrossRef
    36. Herrmann J, Lerman LO, Rodriguez-Porcel M, Holmes DR, Richardson DM, Ritman EL, et al. Coronary vasa vasorum neovascularization precedes epicardial endothelial dysfunction in experimental hypercholesterolemia. Cardiovasc Res 2001;51:762-6. f="http://dx.doi.org/10.1016/S0008-6363(01)00347-9">CrossRef
    37. MacNeill BD, Lowe HC, Takano M, Fuster V, Jang IK. Intravascular modalities for detection of vulnerable plaque: Current status. Arterioscler Thromb Vasc Biol 2003;23:1333-42. f="http://dx.doi.org/10.1161/01.ATV.0000080948.08888.BF">CrossRef
    38. Davies JR, Rudd JH, Weissberg PL. Molecular and metabolic imaging of atherosclerosis. J Nucl Med 2004;45:1898-907.
    39. Choudhury RP, Fisher EA. Molecular imaging in atherosclerosis, thrombosis, and vascular inflammation. Arterioscler Thromb Vasc Biol 2009;29:983-91. f="http://dx.doi.org/10.1161/ATVBAHA.108.165498">CrossRef
    40. Krause W. Delivery of diagnostic agents in computed tomography. Adv Drug Deliv Rev 1999;37:159-73. f="http://dx.doi.org/10.1016/S0169-409X(98)00105-7">CrossRef
    41. Huang B, Law MWM, Khong PL. Whole-body PET/CT scanning: Estimation of radiation dose and cancer risk. Radiology 2009;251:166-74. f="http://dx.doi.org/10.1148/radiol.2511081300">CrossRef
    42. Weissleder R, Elizondo G, Wittenberg J, Rabito CA, Bengele HH, Josephson L. Ultrasmall superparamagnetic iron oxide: Characterization of a new class of contrast agents for MR imaging. Radiology 1990;175:489-93.
    43. Issa N, Poggio ED, Fatica RA, Patel R, Ruggieri PM, Heyka RJ. Nephrogenic systemic fibrosis and its association with gadolinium exposure during MRI. Cleve Clin J Med 2008;75:95-111. f="http://dx.doi.org/10.3949/ccjm.75.2.95">CrossRef
    44. Kuo PH, Kanal E, Abu-Alfa AK, Cowper SE. Gadolinium-based MR contrast agents and nephrogenic systemic fibrosis. Radiology 2007;242:647-9. f="http://dx.doi.org/10.1148/radiol.2423061640">CrossRef
    45. Feinstein SB. The powerful microbubble: From bench to bedside, from intravascular indicator to therapeutic delivery system, and beyond. Am J Physiol Heart Circ Physiol 2004;287:H450-7. f="http://dx.doi.org/10.1152/ajpheart.00134.2004">CrossRef
    46. Schneider M. Molecular imaging and ultrasound-assisted drug delivery. J Endourol 2008;22:795-802. f="http://dx.doi.org/10.1089/end.2007.9821">CrossRef
    47. Voigt JU. Ultrasound molecular imaging. Methods 2009;48:92-7. f="http://dx.doi.org/10.1016/j.ymeth.2009.03.011">CrossRef
    48. Main M, Goldman J, Grayburn P. Ultrasound contrast agents: Balancing safety versus efficacy. Expert Opin Drug Saf 2009;8:49-56. f="http://dx.doi.org/10.1517/14740330802658581">CrossRef
    49. Hyafil F, Cornily JC, Feig JE, Gordon R, Vucic E, Amirbekian V, et al. Noninvasive detection of macrophages using a nanoparticulate contrast agent for computed tomography. Nat Med 2007;13:636-41. f="http://dx.doi.org/10.1038/nm1571">CrossRef
    50. Pontone G, Andreini D, Bartorelli AL, Cortinovis S, Mushtaq S, Bertella E, et al. Diagnostic accuracy of coronary computed tomography angiography: A comparison between prospective and retrospective electrocardiogram triggering. J Am Coll Cardiol 2009;54:346-55. f="http://dx.doi.org/10.1016/j.jacc.2009.04.027">CrossRef
    51. Nash K, Hafeez A, Hou S. Hospital-acquired renal insufficiency. Am J Kidney Dis 2002;39:930-6. f="http://dx.doi.org/10.1053/ajkd.2002.32766">CrossRef
    52. Lederman RJ, Raylman RR, Fisher SJ, Kison PV, San H, Nabel EG, et al. Detection of atherosclerosis using a novel positron-sensitive probe and 18-fluorodeoxyglucose (FDG). Nucl Med Commun 2001;22:747-53. f="http://dx.doi.org/10.1097/00006231-200107000-00004">CrossRef
    53. Ogawa M, Ishino S, Mukai T, Asano D, Teramoto N, Watabe H, et al. (18)F-FDG accumulation in atherosclerotic plaques: Immunohistochemical and PET imaging study. J Nucl Med 2004;45:1245-50.
    54. Tawakol A, Migrino RQ, Hoffmann U, Abbara S, Houser S, Gewirtz H, et al. Noninvasive in vivo measurement of vascular inflammation with F-18 fluorodeoxyglucose positron emission tomography. J Nucl Cardiol 2005;12:294-301. f="http://dx.doi.org/10.1016/j.nuclcard.2005.03.002">CrossRef
    55. Ogawa M, Magata Y, Kato T, Hatano K, Ishino S, Mukai T, et al. Application of 18F-FDG PET for monitoring the therapeutic effect of antiinflammatory drugs on stabilization of vulnerable atherosclerotic plaques. J Nucl Med 2006;47:1845-50.
    56. Rudd JHF, Warburton EA, Fryer TD, Jones HA, Clark JC, Antoun N, et al. Imaging atherosclerotic plaque inflammation with [18F]-fluorodeoxyglucose positron emission tomography. Circulation 2002;105:2708-11. f="http://dx.doi.org/10.1161/01.CIR.0000020548.60110.76">CrossRef
    57. Tawakol A, Migrino RQ, Bashian GG, Bedri S, Vermylen D, Cury RC, et al. In vivo 18F-fluorodeoxyglucose positron emission tomography imaging provides a noninvasive measure of carotid plaque inflammation in patients. J Am Coll Cardiol 2006;48:1818-24. f="http://dx.doi.org/10.1016/j.jacc.2006.05.076">CrossRef
    58. Tahara N, Kai H, Yamagishi SI, Mizoguchi M, Nakaura H, Ishibashi M, et al. Vascular inflammation evaluated by [18F]-fluorodeoxyglucose positron emission tomography is associated with the metabolic syndrome. J Am Coll Cardiol 2007;49:1533-9. f="http://dx.doi.org/10.1016/j.jacc.2006.11.046">CrossRef
    59. Tahara N, Kai H, Nakaura H, Mizoguchi M, Ishibashi M, Kaida H, et al. The prevalence of inflammation in carotid atherosclerosis: Analysis with fluorodeoxyglucose positron emission tomography. Eur Heart J 2007;28:2243-8. f="http://dx.doi.org/10.1093/eurheartj/ehm245">CrossRef
    60. Rudd JHF, Myers KS, Bansilal S, Machac J, Pinto CA, Tong C, et al. Atherosclerosis inflammation imaging with 18F-FDG PET: Carotid, iliac, and femoral uptake reproducibility, quantification methods, and recommendations. J Nucl Med 2008;49:871-8. f="http://dx.doi.org/10.2967/jnumed.107.050294">CrossRef
    61. Davies JR, Rudd JHF, Fryer TD, Graves MJ, Clark JC, Kirkpatrick PJ, et al. Identification of culprit lesions after transient ischemic attack by combined 18F fluorodeoxyglucose positron-emission tomography and high-resolution magnetic resonance imaging. Stroke 2005;36:2642-7. f="http://dx.doi.org/10.1161/01.STR.0000190896.67743.b1">CrossRef
    62. Tahara N, Kai H, Ishibashi M, Nakaura H, Kaida H, Baba K, et al. Simvastatin attenuates plaque inflammation: Evaluation by fluorodeoxyglucose positron emission tomography. J Am Coll Cardiol 2006;48:1825-31. f="http://dx.doi.org/10.1016/j.jacc.2006.03.069">CrossRef
    63. Rogers WJ, Basu P. Factors regulating macrophage endocytosis of nanoparticles: Implications for targeted magnetic resonance plaque imaging. Atherosclerosis 2005;178:67-73. f="http://dx.doi.org/10.1016/j.atherosclerosis.2004.08.017">CrossRef
    64. Schmitz SA, Coupland SE, Gust R, Winterhalter S, Wagner S, Kresse M, et al. Superparamagnetic iron oxide-enhanced MRI of atherosclerotic plaques in Watanabe hereditable hyperlipidemic rabbits. Invest Radiol 2000;35:460-71. f="http://dx.doi.org/10.1097/00004424-200008000-00002">CrossRef
    65. Ruehm SG, Corot C, Vogt P, Kolb S, Debatin JF. Magnetic resonance imaging of atherosclerotic plaque with ultrasmall superparamagnetic particles of iron oxide in hyperlipidemic rabbits. Circulation 2001;103:415-22.
    66. Litovsky S, Madjid M, Zarrabi A, Casscells SW, Willerson JT, Naghavi M. Superparamagnetic iron oxide-based method for quantifying recruitment of monocytes to mouse atherosclerotic lesions in vivo: Enhancement by tissue necrosis factor-[alpha], interleukin-1[beta], and interferon-[gamma]. Circulation 2003;107:1545-9. f="http://dx.doi.org/10.1161/01.CIR.0000055323.57885.88">CrossRef
    67. Schmitz SA, Taupitz M, Wagner S, Wolf KJ, Beyersdorff D, Hamm B. Magnetic resonance imaging of atherosclerotic plaques using superparamagnetic iron oxide particles. J Magn Reson Imaging 2001;14:355-61. f="http://dx.doi.org/10.1002/jmri.1194">CrossRef
    68. Kooi ME, Cappendijk VC, Cleutjens KBJM, Kessels AGH, Kitslaar PJEHM, Borgers M, et al. Accumulation of ultrasmall superparamagnetic particles of iron oxide in human atherosclerotic plaques can be detected by in vivo magnetic resonance imaging. Circulation 2003;107:2453-8. f="http://dx.doi.org/10.1161/01.CIR.0000068315.98705.CC">CrossRef
    69. Trivedi RA, U-King-Im JM, Graves MJ, Cross JJ, Horsley J, Goddard MJ, et al. In vivo detection of macrophages in human carotid atheroma: Temporal dependence of ultrasmall superparamagnetic particles of iron oxide-enhanced MRI. Stroke 2004;35:1631-5. f="http://dx.doi.org/10.1161/01.STR.0000131268.50418.b7">CrossRef
    70. Trivedi RA, Mallawarachi C, U-King-Im JM, Graves MJ, Horsley J, Goddard MJ, et al. Identifying inflamed carotid plaques using in vivo USPIO-enhanced MR imaging to label plaque macrophages. Arterioscler Thromb Vasc Biol 2006;26:1601-6. f="http://dx.doi.org/10.1161/01.ATV.0000222920.59760.df">CrossRef
    71. Kawahara I, Nakamoto M, Kitagawa N, Tsutsumi K, Nagata I, Morikawa M, et al. Potential of magnetic resonance plaque imaging using superparamagnetic particles of iron oxide for the detection of carotid plaque. Neurol Med Chir (Tokyo) 2008;48:157-61. f="http://dx.doi.org/10.2176/nmc.48.157">CrossRef
    72. Lipinski MJ, Amirbekian V, Frias JC, Aguinaldo JGS, Mani V, Briley-Saebo KC, et al. MRI to detect atherosclerosis with gadolinium-containing immunomicelles targeting the macrophage scavenger receptor. Magn Reson Med 2006;56:601-10. f="http://dx.doi.org/10.1002/mrm.20995">CrossRef
    73. Kaufmann BA, Sanders JM, Davis C, Xie A, Aldred P, Sarembock IJ, et al. Molecular imaging of inflammation in atherosclerosis with targeted ultrasound detection of vascular cell adhesion molecule-1. Circulation 2007;116:276-84. f="http://dx.doi.org/10.1161/CIRCULATIONAHA.106.684738">CrossRef
    74. Villanueva FS, Jankowski RJ, Klibanov S, Pina ML, Alber SM, Watkins SC, et al. Microbubbles targeted to intercellular adhesion molecule-1 bind to activated coronary artery endothelial cells. Circulation 1998;98:1-5.
    75. Demos SM, Alkan-Onyuksel H, Kane BJ, Ramani K, Nagaraj A, Greene R, et al. In vivo targeting of acoustically reflective liposomes for intravascular and transvascular ultrasonic enhancement. J Am Coll Cardiol 1999;33:867-75. f="http://dx.doi.org/10.1016/S0735-1097(98)00607-X">CrossRef
    76. Kelly KA, Allport JR, Tsourkas A, Shinde-Patil VR, Josephson L, Weissleder R. Detection of vascular adhesion molecule-1 expression using a novel multimodal nanoparticle. Circ Res 2005;96:327-36. f="http://dx.doi.org/10.1161/01.RES.0000155722.17881.dd">CrossRef
    77. Nahrendorf M, Jaffer FA, Kelly KA, Sosnovik DE, Aikawa E, Libby P, et al. Noninvasive vascular cell adhesion molecule-1 imaging identifies inflammatory activation of cells in atherosclerosis. Circulation 2006;114:1504-11. f="http://dx.doi.org/10.1161/CIRCULATIONAHA.106.646380">CrossRef
    78. Sipkins DA, Gijbels K, Tropper FD, Bednarski M, Li KCP, Steinman L. ICAM-1 expression in autoimmune encephalitis visualized using magnetic resonance imaging. J Neuroimmunol 2000;104:1-9. f="http://dx.doi.org/10.1016/S0165-5728(99)00248-9">CrossRef
    79. Bevilacqua MP, Nelson RM. Selectins. J Clin Invest 1993;91:379-87. f="http://dx.doi.org/10.1172/JCI116210">CrossRef
    80. Kr盲ling BM, Razon MJ, Boon LM, Zurakowski D, Seachord C, Darveau RP, et al. E-selectin is present in proliferating endothelial cells in human hemangiomas. Am J Pathol 1996;148:1181-91.
    81. Bischoff J, Brasel C, Krling B, Vranovska K. E-selectin is upregulated in proliferating endothelial cells in vitro. Microcirculation 1997;4:279-87. f="http://dx.doi.org/10.3109/10739689709146791">CrossRef
    82. Kanwar S, Smith CW, Kubes P. An absolute requirement for p-selectin in ischemia/reperfusion-induced leukocyte recruitment in cremaster muscle. Microcirculation 1998;5:281-7.
    83. Kang HW, Josephson L, Petrovsky A, Weissleder R, Bogdanov A. Magnetic resonance imaging of inducible e-selectin expression in human endothelial cell culture. Bioconjug Chem 2002;13:122-7. f="http://dx.doi.org/10.1021/bc0155521">CrossRef
    84. Kang HW, Torres D, Wald L, Weissleder R, Bogdanov AA. Targeted imaging of human endothelial-specific marker in a model of adoptive cell transfer. Lab Invest 2006;86:599-609.
    85. Boutry S, Burtea C, Laurent S, Toubeau G, Vander Elst L, Muller RN. Magnetic resonance imaging of inflammation with a specific selectin-targeted contrast agent. Magn Reson Med 2005;53:800-7. f="http://dx.doi.org/10.1002/mrm.20403">CrossRef
    86. Radermacher KA, Beghein N, Boutry S, Laurent S, Elst LV, Muller RN, et al. In vivo detection of inflammation using pegylated iron oxide particles targeted at e-selectin: A multimodal approach using MR imaging and EPR spectroscopy. Invest Radiol 2009;44:398-404. f="http://dx.doi.org/10.1097/RLI.0b013e3181a49639">CrossRef
    87. McAteer MA, Schneider JE, Ali ZA, Warrick N, Bursill CA, von zur Muhlen C, et al. Magnetic resonance imaging of endothelial adhesion molecules in mouse atherosclerosis using dual-targeted microparticles of iron oxide. Arterioscler Thromb Vasc Biol 2008;28:77-83. f="http://dx.doi.org/10.1161/ATVBAHA.107.145466">CrossRef
    88. Galis ZS, Khatri JJ. Matrix metalloproteinases in vascular remodeling and atherogenesis: The good, the bad, and the ugly. Circ Res 2002;90:251-62.
    89. Lancelot E, Amirbekian V, Brigger I, Raynaud JS, Ballet S, David C, et al. Evaluation of matrix metalloproteinases in atherosclerosis using a novel noninvasive imaging approach. Arterioscler Thromb Vasc Biol 2008;28:425-32. f="http://dx.doi.org/10.1161/ATVBAHA.107.149666">CrossRef
    90. Ohshima S, Petrov A, Fujimoto S, Zhou J, Azure M, Edwards DS, et al. Molecular imaging of matrix metalloproteinase expression in atherosclerotic plaques of mice deficient in apolipoprotein E or low-density-lipoprotein receptor. J Nucl Med 2009;50:612-7. f="http://dx.doi.org/10.2967/jnumed.108.055889">CrossRef
    91. Hynes RO. Integrins: A family of cell surface receptors. Cell 1987;48:549-54. f="http://dx.doi.org/10.1016/0092-8674(87)90233-9">CrossRef
    92. Hoshiga M, Alpers CE, Smith LL, Giachelli CM, Schwartz SM. {alpha}v脽3 Integrin expression in normal and atherosclerotic artery. Circ Res 1995;77:1129-35.
    93. Brooks PC, Clark RA, Cheresh DA. Requirement of vascular integrin alpha v beta 3 for angiogenesis. Science 1994;264:569-71. f="http://dx.doi.org/10.1126/science.7512751">CrossRef
    94. Haubner R. Alphavbeta3-integrin imaging: A new approach to characterise angiogenesis? Eur J Nucl Med Mol Imaging 2006;33 Suppl 1:54-63. f="http://dx.doi.org/10.1007/s00259-006-0136-0">CrossRef
    95. Winter PM, Morawski AM, Caruthers SD, Fuhrhop RW, Zhang H, Williams TA, et al. Molecular imaging of angiogenesis in early-stage atherosclerosis with alpha(v)beta3-integrin-targeted nanoparticles. Circulation 2003;108:2270-4. f="http://dx.doi.org/10.1161/01.CIR.0000093185.16083.95">CrossRef
    96. Burtea C, Laurent S, Murariu O, Rattat D, Toubeau G, Verbruggen A, et al. Molecular imaging of alpha v beta3 integrin expression in atherosclerotic plaques with a mimetic of RGD peptide grafted to Gd-DTPA. Cardiovasc Res 2008;78:148-57. f="http://dx.doi.org/10.1093/cvr/cvm115">CrossRef
    97. Haubner R, Weber W, Beer A, Vabuliene E, Reim D, Sarbia M, et al. Noninvasive visualization of the activated alphavbeta3 integrin in cancer patients by positron emission tomography and [18F]Galacto-RGD. PLoS Med 2005;2:e70. f="http://dx.doi.org/10.1371/journal.pmed.0020070">CrossRef
    98. Meoli D, Sadeghi M, Krassilnikova S, Bourke B, Giordano F, Dione D, et al. Noninvasive imaging of myocardial angiogenesis following experimental myocardial infarction. J Clin Invest 2004;113:1684-91.
    99. Sadeghi MM, Krassilnikova S, Zhang J, Gharaei AA, Fassaei HR, Esmailzadeh L, et al. Detection of injury-induced vascular remodeling by targeting activated {alpha}v{beta}3 integrin in vivo. Circulation 2004;110:84-90. f="http://dx.doi.org/10.1161/01.CIR.0000133319.84326.70">CrossRef
    100. Hua J, Dobrucki LW, Sadeghi MM, Zhang J, Bourke BN, Cavaliere P, et al. Noninvasive imaging of angiogenesis with a 99mTc-labeled peptide targeted at [alpha]v[beta]3 integrin after murine hindlimb ischemia. Circulation 2005;111:3255-60. f="http://dx.doi.org/10.1161/CIRCULATIONAHA.104.485029">CrossRef
    101. Ellegala DB, Leong-Poi H, Carpenter JE, Klibanov AL, Kaul S, Shaffrey ME, et al. Imaging tumor angiogenesis with contrast ultrasound and microbubbles targeted to [alpha]v[beta]3. Circulation 2003;108:336-41. f="http://dx.doi.org/10.1161/01.CIR.0000080326.15367.0C">CrossRef
    102. Leong-Poi H, Christiansen J, Klibanov AL, Kaul S, Lindner JR. Noninvasive assessment of angiogenesis by ultrasound and microbubbles targeted to alpha(v)-integrins. Circulation 2003;107:455-60. f="http://dx.doi.org/10.1161/01.CIR.0000044916.05919.8B">CrossRef
    103. Willmann J, Lutz A, Paulmurugan R, Patel M, Chu P, Rosenberg J, et al. Dual-targeted contrast agent for US assessment of tumor angiogenesis in vivo. Radiology 2008;248:936-44. f="http://dx.doi.org/10.1148/radiol.2483072231">CrossRef
    104. Castellani P, Borsi L, Carnemolla B, Biro A, Dorcaratto A, Viale GL, et al. Differentiation between high- and low-grade astrocytoma using a human recombinant antibody to the extra domain-B of fibronectin. Am J Pathol 2002;161:1695-700.
    105. Matter CM, Schuler PK, Alessi P, Meier P, Ricci R, Zhang D, et al. Molecular imaging of atherosclerotic plaques using a human antibody against the extra-domain B of fibronectin. Circ Res 2004;95:1225-33. f="http://dx.doi.org/10.1161/01.RES.0000150373.15149.ff">CrossRef
    106. Viti F, Tarli L, Giovannoni L, Zardi L, Neri D. Increased binding affinity and valence of recombinant antibody fragments lead to improved targeting of tumoral angiogenesis. Cancer Res 1999;59:347-52.
    107. Santimaria M, Moscatelli G, Viale G, Giovannoni L, Neri G, Viti F, et al. Immunoscintigraphic detection of the ED-B domain of fibronectin, a marker of angiogenesis, in patients with cancer. Clin Cancer Res 2003;9:571-9.
    108. Semenza GL. Targeting HIF-1 for cancer therapy. Nat Rev Cancer 2003;3:721-32. f="http://dx.doi.org/10.1038/nrc1187">CrossRef
    109. Bredow S, Lewin M, Hofmann B, Marecos E, Weissleder R. Imaging of tumour neovasculature by targeting the TGF-[beta] binding receptor endoglin. Eur J Cancer 2000;36:675-81. f="http://dx.doi.org/10.1016/S0959-8049(99)00335-4">CrossRef
    110. Korpanty G, Carbon J, Grayburn P, Fleming J, Brekken R. Monitoring response to anticancer therapy by targeting microbubbles to tumor vasculature. Clin Cancer Res 2007;13:323-30. f="http://dx.doi.org/10.1158/1078-0432.CCR-06-1313">CrossRef
    111. Pochon SP, Tardy IP, Bussat PB, Bettinger TP, Brochot JB, von Wronski MP, et al. BR55: A lipopeptide-based VEGFR2-targeted ultrasound contrast agent for molecular imaging of angiogenesis. Invest Radiol 2010;45:89-95. f="http://dx.doi.org/10.1097/RLI.0b013e3181c5927c">CrossRef
    112. Sahoo SK, Labhasetwar V. Nanotech approaches to drug delivery and imaging. Drug Discov Today 2003;8:1112-20. f="http://dx.doi.org/10.1016/S1359-6446(03)02903-9">CrossRef
    113. Sandhiya S, Dkhar SA, Surendiran A. Emerging trends of nanomedicine鈥擜n overview. Fundam Clin Pharmacol 2009;23:263-9. f="http://dx.doi.org/10.1111/j.1472-8206.2009.00692.x">CrossRef
    114. Newman CMH, Bettinger T. Gene therapy progress and prospects: Ultrasound for gene transfer. Gene Ther 2007;14:465-75. f="http://dx.doi.org/10.1038/sj.gt.3302925">CrossRef
    115. Frinking PJA, Bouakaz A, de Jong N, Ten Cate FJ, Keating S. Effect of ultrasound on the release of micro-encapsulated drugs. Ultrasonics 1998;36:709-12. f="http://dx.doi.org/10.1016/S0041-624X(97)00122-4">CrossRef
    116. Kobulnik J, Kuliszewski MA, Stewart DJ, Lindner JR, Leong-Poi H. Comparison of gene delivery techniques for therapeutic angiogenesis: Ultrasound-mediated destruction of carrier microbubbles versus direct intramuscular injection. J Am Coll Cardiol 2009;54:1735-42. f="http://dx.doi.org/10.1016/j.jacc.2009.07.023">CrossRef
    117. Suzuki JI, Ogawa M, Takayama K, Taniyama Y, Morishita R, Hirata Y, et al. Ultrasound-microbubble-mediated intercellular adhesion molecule-1 small interfering ribonucleic acid transfection attenuates neointimal formation after arterial injury in mice. J Am Coll Cardiol 2010;55:904-13. f="http://dx.doi.org/10.1016/j.jacc.2009.09.054">CrossRef
    118. Juffermans LJM, Meijering DBM, van Wamel A, Henning RH, Kooiman K, Emmer M, et al. Ultrasound and microbubble-targeted delivery of therapeutic compounds: ICIN Report Project 49: Drug and gene delivery through ultrasound and microbubbles. Neth Heart J 2009;17:82-6. f="http://dx.doi.org/10.1007/BF03086223">CrossRef
    119. Ohl CD, Arora M, Ikink R, de Jong N, Versluis M, Delius M, et al. Sonoporation from jetting cavitation bubbles. Biophys J 2006;91:4285-95. f="http://dx.doi.org/10.1529/biophysj.105.075366">CrossRef
    120. van Wamel A, Kooiman K, Harteveld M, Emmer M, ten Cate FJ, Versluis M, et al. Vibrating microbubbles poking individual cells: Drug transfer into cells via sonoporation. J Control Release 2006;112:149-55. f="http://dx.doi.org/10.1016/j.jconrel.2006.02.007">CrossRef
    121. Meijering BDM, Juffermans LJM, van Wamel A, Henning RH, Zuhorn IS, Emmer M, et al. Ultrasound and microbubble-targeted delivery of macromolecules is regulated by induction of endocytosis and pore formation. Circ Res 2009;104:679-87. f="http://dx.doi.org/10.1161/CIRCRESAHA.108.183806">CrossRef
    122. Hellings WE, Peeters W, Moll FL, Piers SRD, van Setten J, van der Spek PJ, et al. Composition of carotid atherosclerotic plaque is associated with cardiovascular outcome. A prognostic study. Circulation 2010;121:1941-50. f="http://dx.doi.org/10.1161/CIRCULATIONAHA.109.887497">CrossRef
    123. Wu YW, Kao HL, Chen MF, Lee BC, Tseng WYI, Jeng JS, et al. Characterization of plaques using 18F-FDG PET/CT in patients with carotid atherosclerosis and correlation with matrix metalloproteinase-1. J Nucl Med 2007;48:227-33.
    124. Izquierdo-Garcia D, Davies JR, Graves MJ, Rudd JHF, Gillard JH, Weissberg PL, et al. Comparison of methods for magnetic resonance-guided [18-F]fluorodeoxyglucose positron emission tomography in human carotid arteries: Reproducibility, partial volume correction, and correlation between methods. Stroke 2009;40:86-93. f="http://dx.doi.org/10.1161/STROKEAHA.108.521393">CrossRef
    125. Gessner R, Dayton P. Advances in molecular imaging with ultrasound. Mol Imaging 2010;9:117-27.
    126. Cai W, Rao J, Gambhir SS, Chen X. How molecular imaging is speeding up antiangiogenic drug development. Mol Cancer Ther 2006;5:2624-33. f="http://dx.doi.org/10.1158/1535-7163.MCT-06-0395">CrossRef
  • 作者单位:Gerrit L. ten Kate MD (1) (2)
    Eric J. G. Sijbrands MD, PhD (1)
    Roelf Valkema MD, PhD (3)
    Folkert J. ten Cate MD, PhD (2)
    Steven B. Feinstein MD (4)
    Antonius F. W. van der Steen PhD (5)
    Mat J. A. P. Daemen MD, PhD (6)
    Arend F. L. Schinkel MD, PhD (1) (2)

    1. Division of Pharmacology, Vascular and Metabolic Diseases, Department of Internal Medicine, Erasmus Medical Center, Rotterdam, The Netherlands
    2. Department of Cardiology, Thoraxcenter, Erasmus Medical Center, Rotterdam, The Netherlands
    3. Department of Nuclear Medicine, Erasmus Medical Center, Rotterdam, The Netherlands
    4. Section of Cardiology, Department of Internal Medicine, Rush University Medical Center, Chicago, IL, USA
    5. Department of Biomedical Engineering, Thoraxcenter, Erasmus Medical Center, Rotterdam, The Netherlands
    6. Department of Pathology, Cardiovascular Research Institute Maastricht, Maastricht University Medical Center, Maastricht, The Netherlands
文摘
Current developments in cardiovascular biology and imaging enable the noninvasive molecular evaluation of atherosclerotic vascular disease. Intraplaque neovascularization sprouting from the adventitial vasa vasorum has been identified as an independent predictor of intraplaque hemorrhage and plaque rupture. These intraplaque vasa vasorum result from angiogenesis, most likely under influence of hypoxic and inflammatory stimuli. Several molecular imaging techniques are currently available. Most experience has been obtained with molecular imaging using positron emission tomography and single photon emission computed tomography. Recently, the development of targeted contrast agents has allowed molecular imaging with magnetic resonance imaging, ultrasound and computed tomography. The present review discusses the use of these molecular imaging techniques to identify inflammation and intraplaque vasa vasorum to identify vulnerable atherosclerotic plaques at risk of rupture and thrombosis. The available literature on molecular imaging techniques and molecular targets associated with inflammation and angiogenesis is discussed, and the clinical applications of molecular cardiovascular imaging and the use of molecular techniques for local drug delivery are addressed.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700