In Vitro and Initial In Vivo Evaluation of 68Ga-Labeled Transferrin Receptor (TfR) Binding Peptides as Potential Carriers for Enhanced Drug Transport into TfR Expres
详细信息    查看全文
  • 作者:Carmen W?ngler (1) (2)
    Dina Nada (1) (2)
    Georg H?fner (3)
    Simone Maschauer (4)
    Bj?rn W?ngler (5)
    Stephan Schneider (6)
    Esther Schirrmacher (1)
    Klaus T. Wanner (3)
    Ralf Schirrmacher (1) (2)
    Olaf Prante (4)
  • 关键词:Blood brain barrier (BBB) ; Active drug transport ; Transferrin receptor (TfR)
  • 刊名:Molecular Imaging and Biology
  • 出版年:2011
  • 出版时间:April 2011
  • 年:2011
  • 卷:13
  • 期:2
  • 页码:332-341
  • 全文大小:254KB
  • 参考文献:1. Schreckenberger M, H?gele S, Siessmeier T, Buchholz H-G, Armbrust-Henrich H, R?sch F, Gründer G, Bartenstein P, Vogt T (2004) The dopamine D2 receptor ligand 18F–desmethoxyfallypride: an appropriate fluorinated PET tracer for the differential diagnosis of parkinsonism. Eur J Nucl Med Mol Imag 31(8):1128-135 CrossRef
    2. Gründer G, Fellows C, Janouschek H, Veselinovic T, Boy C, Br?cheler A, Kirschbaum KM, Hellmann S, Spreckelmeyer KM, Hiemke C, R?ch F, Schaefer WM, Vernaleken I (2008) Brain and plasma pharmacokinetics of aripiprazole in patients with schizophrenia: an [18F]Fallypride PET study. Am J Psychiatry 165:988-95 CrossRef
    3. Werhahn KJ, Landvogt C, Klimpe S, Buchholz HG, Yakushev I, Siessmeier T, Müller-Forell W, Piel M, R?sch F, Glaser M, Schreckenberger M, Bartenstein P (2006) Decreased dopamine D2/D3-receptor binding in temporal lobe epilepsy: an [18F]Fallypride PET study. Epilepsia 47(8):1392-396 CrossRef
    4. Catafau AM, Suarez M, Bullich S, Llop J, Nucci G, Gunn RN, Brittain C, Laruelle M (2009) Within-subject comparison of striatal D2 receptor occupancy measurements using [123I]IBZM SPECT and [11C]Raclopride PET. Neuroimage 46:447-58 CrossRef
    5. Reeves S, Brown R, Howard R, Grasby P (2009) Increased striatal dopamine (D2/D3) receptor availability and delusions in Alzheimer disease. Neurology 72:528-34 CrossRef
    6. Odano I, Halldin C, Karlsson P, Varrone A, Airaksinen AJ, Krasikova RN, Farde L (2009) [18F]Flumazenil binding to central benzodiazepine receptor studies by PET—quantitative analysis and comparisons with [11C]flumazenil. Neuroimage 45:891-02 CrossRef
    7. Heiss W-D, Sobesky J (2008) Comparison of PET and DW/PW-MRI in acute ischemic stroke. Keio J Med 57(3):125-31 CrossRef
    8. Fisher PM, Meltzer CC, Price JC, Coleman RL, Ziolko SK, Becker C, Moses-Kolko EL, Berga SL, Hariri AR (2009) Medial prefrontal cortex 5-HT2A density is correlated with amygdala reactivity, response habituation, and functional coupling. Cereb Cortex 19(11):2499-507 CrossRef
    9. Erritzoe D, Rasmussen H, Kristiansen KT, Frokjaer VG, Haugbol S, Pinborg L, Baaré W, Svarer C, Madsen J, Lublin H, Knudsen GM, Glenthoj BY (2008) Cortical and subcortical 5-HT2A receptor binding in neuroleptic-naive first-episode schizophrenic patients. Neuropsychopharmacology 33:2435-441 CrossRef
    10. Cilia R, Marotta G, Benti R, Pezzoli G, Antonini A (2005) Brain SPECT imaging in multiple system atrophy. J Neural Transm 112:1635-645 CrossRef
    11. Leenders KL (2003) Significance of non-presynaptic SPECT tracer methods in Parkinson’s disease. Mov Disord 18(suppl7):S39–S42 CrossRef
    12. Eshuis SA, Jager PL, Maguire RP, Jonkman S, Dierck RA, Leenders KL (2009) Direct comparison of FP-CIT SPECT and F-DOPA PET in patients with Parkinson’s disease and healthy controls. Eur J Nucl Med Mol Imag 36:454-62 CrossRef
    13. Qian ZM, Li H, Sun H, Ho K (2002) Targeted drug delivery via the transferrin receptor-mediated endocytosis pathway. Pham Rev 54(4):561-87 CrossRef
    14. de Boer AG, Gaillard PJ (2007) Drug targeting to the brain. Ann Rev Pharmacol Toxicol 47:323-55 CrossRef
    15. Pardridge WM (2008) Re-engineering biopharmaceuticals for delivery to brain with molecular trojan horses. Bioconjug Chem 19(7):1327-338 CrossRef
    16. Jones AR, Shusta EV (2007) Blood–brain barrier transport of therapeutics via receptor-mediation. Pharm Res 24(9):1759-771 CrossRef
    17. Calzolari A, Oliviero I, Deaglio S, Mariani G, Biffoni M, Sposi NM, Malavasi F, Peschle C, Testa U (2007) Transferrin receptor 2 is frequently expressed in human cancer cell lines. Blood Cells Mol Dis 39:82-1 CrossRef
    18. Shin S-U, Friden P, Moran M, Olson T, Kang Y-S, Pardridge WM, Morrison SL (1995) Transferrin-antibody fusion proteins are effective in brain targeting. Proc Natl Acad Sci 92:2820-824 CrossRef
    19. Mishera V, Mahor S, Rawat A, Gupta PN, Dubey P, Khatri K, Vyas SP (2006) Targeted brain delivery of AZT via transferrin anchored pegylated albumin nanoparticles. J Drug Target 14(1):45-3 CrossRef
    20. Ulbrich K, Hekmatara T, Herbert E, Kreuter J (2009) Transferrin- and transferrin-receptor-antibody-modified nanoparticles enable drug delivery across the blood–brain barrier (BBB). Eur J Pharm Biopharm 71:251-56 CrossRef
    21. Aktas Y, Yemisci M, Andrieux K, Gürsoy RN, Alonso MJ, Fernandez-Megia E, Novoa-Carballal R, Quinoa E, Riguera R, Sargon MF, Celik HH, Demir AS, H?ncal AA, Dalkara T, Capan Y, Couvreur P (2005) Development and brain delivery of chitosan-PEG nanoparticles functionalized with the monoclonal antibody OX26. Bioconj Chem 16:1503-511 CrossRef
    22. Pang Z, Lu W, Gao H, Hu K, Chen J, Zhang C, Gao X, Jiang X, Zhu C (2008) Preparation and brain delivery property of biodegradable polymersomes conjugated with OX26. J Contr Rel 128:120-27 CrossRef
    23. Beduneau A, Saulnier P, Hindre F, Clavreul A, Leroux J-C, Benoit J-P (2007) Design of targeted lipid nanocapsules by conjugation of whole antibodies and antibody Fab-fragments. Biomat 28:4978-990 CrossRef
    24. Hackel BJ, Huang D, Bubolz JC, Wang XX, Shusta EV (2006) Production of soluble and active transferrin receptor-targeting single-chain antibody using Saccharomyces cerevisiae. Pharm Res 23(4):790-97 CrossRef
    25. Lee JH, Engler JA, Collawn JF, Moore BA (2001) Receptor mediated uptake of peptides that bind the human transferrin receptor. Eur J Biochem 268:2004-012 CrossRef
    26. Oh S, Kim BJ, Singh NP, Lai H, Sasaki T (2009) Synthesis and anti-cancer activity if colvalent conjugates of artemisinin and a transferrin-receptor targeting peptide. Cancer Lett 274:33-9 CrossRef
    27. Moos T, Morgan EH (2001) Restricted transport of anti-transferrin receptor antibody (OX26) through the blood–brain barrier in the rat. J Neurochem 79(1):119-29 CrossRef
    28. W?ngler C, W?ngler B, Eisenhut M, Haberkorn U, Mier W (2008) Improved syntheses and applicability of different DOTA building blocks for multiply derivatized scaffolds. Bioorg Med Chem 16:2606-616 CrossRef
    29. W?ngler B, Quandt G, Iovkova L, Schirrmacher E, W?ngler C, Boening G, Hacker M, Schmoeckel M, Jurkschat M, Bartenstein P, Schirrmacher R (2009) Kit-like 18F-labeling of proteins: synthesis of 4-(di-tert-butyl[18F]fluorosilyl)benzenethiol (Si[18F]FA-SH) labeled rat serum albumin for blood pool imaging with PET. Bioconj Chem 20:317-21 CrossRef
    30. Wellings DA, Atherton E (1997) Standard Fmoc protocols. Meth Enzymol 289:44-7 CrossRef
    31. Prante O, Einsiedel J, Haubner R, Gmeiner P, Wester HJ, Kuwert T, Maschauer S (2007) 3, 4, 6-Tri-O-acetyl-2-deoxy-2-[18F]fluoroglucopyranosyl phenylthio-sulfonate: a thiol-reactive agent for the chemoselective 18F-glycosylation of peptides. Bioconjug Chem 18(1):254-62 CrossRef
    32. Malmberg A, Jerning E, Mohell N (1996) Critical reevaluation of spiperone and benzamide binding to dopamine D2 receptors: evidence for identical binding sites. Eur J Pharmacol 303:123-28 CrossRef
    33. Schirrmacher R, Bradtm?ller G, Schirrmacher E, Thews O, Tillmanns J, Siessmeier T, Buchholz HG, Bartenstein P, W?ngler B, Niemeyer CM, Jurkschat K (2006) 18F-labeling of peptides by means of an organosilicon-based fluoride acceptor. Angew Chem Int Ed Engl 45(36):6047-050 CrossRef
    34. Schirrmacher E, W?ngler B, Cypryk M, Bradtm?ller G, Sch?fer M, Eisenhut M, Jurkschat K, Schirrmacher R (2007) Synthesis of p-(di-tert-butyl[18F]fluorosilyl)benzaldehyde ([18F]SiFA-A) with high specific activity by isotopic exchange: a convenient labeling synthon for the 18F-labeling of / N-amino-oxy derivatized peptides. Bioconjug Chem 18(6):2085-089 CrossRef
  • 作者单位:Carmen W?ngler (1) (2)
    Dina Nada (1) (2)
    Georg H?fner (3)
    Simone Maschauer (4)
    Bj?rn W?ngler (5)
    Stephan Schneider (6)
    Esther Schirrmacher (1)
    Klaus T. Wanner (3)
    Ralf Schirrmacher (1) (2)
    Olaf Prante (4)

    1. McConnell Brain Imaging Centre, McGill University, Montreal, Canada
    2. Lady Davis Institute for Medical Research, McGill University, Montreal, Canada
    3. Pharmaceutical Chemistry, Ludwig-Maximilians-University Munich, Munich, Germany
    4. Laboratory of Molecular Imaging, Clinic of Nuclear Medicine, Friedrich-Alexander University, Erlangen, Germany
    5. Department of Nuclear Medicine, University Hospital Munich, Ludwig-Maximilians University Munich, Munich, Germany
    6. Department of Internal Medicine I, Division of Endocrinology and Metabolism, Berufsgenossenschaftliches University Hospital Bergmannsheil, Ruhr-University Bochum, Bochum, Germany
文摘
Purpose The transferrin receptor (TfR) is one of the most attractive targets to overcome the blood–brain barrier (BBB). It has recently been shown that THRPPMWSPVWP binds to the TfR and is subsequently internalized into TfR-expressing cells. Here, we evaluated the ability of THRPPMWSPVWP to become internalized into human TfR-expressing cells via endocytosis to determine its potential to act as a carrier system for the transport of small molecules across the BBB. Procedures To validate the underlying concept of a conjugate consisting of a small brain imaging tracer and a large peptidic carrier molecule, a conjugate of the high affinity D2 receptor ligand fallypride and the TfR targeting peptide THRPPMWSPVWP has been synthesized. Furthermore, two derivatives of THRPPMWSPVWP were labeled with 68Ga in high radiochemical yields (>96%) and a radiochemical purity of 96-8% and evaluated in vitro and in vivo. Results The fallypride–THRPPMWSPVWP conjugate still displayed a K i of 27?nM. The uptake of the 68Ga-labeled peptides into TfR-bearing cells was investigated using U87MG and HT-29 cells to assess the capability of the peptide to act as a carrier molecule targeting the TfR. The in vitro binding studies revealed negligible uptake of the tested 68Ga-labeled conjugates ranging from 0.08% to 0.66% after 60?min incubation at 37°C. Initial in vivo experiments with 68Ga-DOTA-S-maleimido–THRPPMWSPVWP in two healthy rats showed a mean brain uptake of 0.037% injected dose per gram, confirming the results obtained in vitro. Conclusion These results suggest that the accumulation of the 68Ga-radiolabeled conjugates of the TfR-binding peptide THRPPMWSPVWP into TFR expressing human cell lines is nonspecific and too low to render this peptide suitable as a possible carrier molecule for a receptor-mediated transport of compounds across the BBB.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700